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Intro/context

In the quest for maximum accuracy, ILRS analysts will estimate range errors for the next TRF
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Intro/context

In the quest for maximum accuracy, ILRS analysts will estimate range errors for the next TRF
Our initial results for Etalon satellites showed the presence of big biases for many stations

These estimates, with no clear correlation with biases from other targets, suggested the problem might
not lie with the observations
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Intro/context

In the quest for maximum accuracy, ILRS analysts will estimate range errors for the next TRF
Our initial results for Etalon satellites showed the presence of big biases for many stations

These estimates, with no clear correlation with biases from other targets, suggested the problem might
not lie with the observations
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H ici i AV t of adopted CoM
This prompted us to revisit the model employed to derive CoM Cgf;’g;ﬁgﬁjigﬁ?jgtaﬁogg‘;gjem"
corrections for all geodetic spherical satellites e
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Intro/context

CoM values used until now:
Otsubo & Appleby 2003 (LAGEOS, Etalon, Ajisai)
Otsubo et al 2014 (LARES, Starlette, Stella)

We have revisited this model, improved some aspects of it, developed it further, and applied it to compute
new CoM offsets for six “cannonball” satellites (Rodriguez, Otsubo, Appleby 2019)
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Intro/context

CoM values used until now:
Otsubo & Appleby 2003 (LAGEOS, Etalon, Ajisai)
Otsubo et al 2014 (LARES, Starlette, Stella)

We have revisited this model, improved some aspects of it, developed it further, and applied it to compute
new CoM offsets for six “cannonball” satellites (Rodriguez, Otsubo, Appleby 2019)

Some of the novelties:
New modelling approach for multi-photon stations
Recomputed optical response functions, now wavelength dependent
Return rate dependency now system specific
Thorough hardware and operation details gathered from several sources
High precision, full rate single-photon data
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Intro/context

New values are sufficiently different to old ones to affect global parameters of interest

On average: ~2.5mm change for small targets (LARES, Starlette, Stella)
~4.5 mm change for LAGEOS
~20 mm change for big targets (Etalon, Ajisai)
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New values are sufficiently different to old ones to affect global parameters of interest
On average: ~2.5mm change for small targets (LARES, Starlette, Stella)

~4.5 mm change for LAGEOS

~20 mm change for big targets (Etalon, Ajisai)

This, on its own, implies a change in SLR frame scale of ~0.65 ppb
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Intro/context

New values are sufficiently different to old ones to affect global parameters of interest
On average: ~2.5mm change for small targets (LARES, Starlette, Stella)

~4.5 mm change for LAGEOS

~20 mm change for big targets (Etalon, Ajisai)

This, on its own, implies a change in SLR frame scale of ~0.65 ppb

Also GM: current GM value confirmed when using new CoM values
(higher GM estimate obtained with old ones)
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Intro/context

What is the accuracy of the new model?
What are the possible sources of errors and uncertainty?

When and what for does it even matter anyway?
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CoM model

1. Computation of satellite optical transfer functions
2. Computation of CoM values

a. Single-photon, single-stop stations
b. Multi-photon stations
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CoM model

1. Computation of satellite optical transfer functions
2. Computation of CoM values

a. Single-photon, single-stop stations
b. Multi-photon stations

Single-photon operation: intensity of detected laser pulses is limited, statistically only one
photon reaches the detector

Achieved by limiting detection rate below ~10%, so that probability of multi-photon
events is very low (Poisson statistics)
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CoM model. Optical transfer functions

Characterisation of target optical response

Function of:
physical characteristics of retroreflectors
geometry of arrays
laser wavelength
target orientation
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CoM model. Optical transfer functions

Characterisation of target optical response

Function of:
physical characteristics of retroreflectors

geometry of arrays
laser wavelength
target orientation

Physical data — ray tracing individual retro

Reflectivity map
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CoM model. Optical transfer functions

Characterisation of target optical response

Function of:
physical characteristics of retroreflectors
geometry of arrays
laser wavelength
target orientation

Physical data — ray tracing individual retro — average over array

Reflectivity map Response at arbitrary orientations
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CoM model. Optical transfer functions

Characterisation of target optical response

Function of:
physical characteristics of retroreflectors
geometry of arrays
laser wavelength
target orientation

Physical data — ray tracing individual retro — average over array — empirical fit to single-photon data

Reflectivity map Response at arbitrary orientations
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CoM model. 1) Optical transfer functions

Obtained high quality fits using data from Herstmonceux station

A single parameter is optimised here, describing the shape of the response functions
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CoM model. 1) Optical transfer functions

Obtained high quality fits using data from Herstmonceux station

A single parameter is optimised here, describing the shape of the response functions
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Uncertainties/issues:
fit parameter inaccuracies
orientation effects
wavelength dependency (fit to 532 nm)
clipping of distribution
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CoM model. 2) Computation of values

Taking into account specifics of hardware/operation, use transfer functions to compute CoM offsets

a. Single photon systems
Distribution of detections = convolution system noise with target response

Use station details to compute expected distribution of detections (laser pulse width, detector jitter,
timer precision...)

Use reduction algorithm employed at station to compute reference point
CoM = difference between calibration and satellite
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CoM model. 2) Computation of values

Taking into account specifics of hardware/operation, use transfer functions to compute CoM offsets

a. Single photon systems

Distribution of detections = convolution system noise with target response

Use station details to compute expected distribution of detections (laser pulse width, detector jitter,
timer precision...)

Use reduction algorithm employed at station to compute reference point

CoM = difference between calibration and satellite

Uncertainties/issues:
Is hardware data accurate?
Accuracy of average return rate?
Impact of noise?
Calibration return rate?
Detector effects at high return rates
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CoM model. 2) Computation of values

Taking into account specifics of hardware/operation, use transfer functions to compute CoM offsets

b. Multi photon systems

Distribution of detections != simple convolution

Using station details perform Monte Carlo simulation of detection process
Use reduction algorithm employed at the station to compute reference point
CoM = difference between calibration and satellite
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CoM model. 2) Computation of values

Taking into account specifics of hardware/operation, use transfer functions to compute CoM offsets

b. Multi photon systems

Distribution of detections != simple convolution

Using station details perform Monte Carlo simulation of detection process
Use reduction algorithm employed at the station to compute reference point
CoM = difference between calibration and satellite

Uncertainties/issues:
Is hardware data accurate?
Simplifications in Monte Carlo simulation:
systems are simplified, idealised, and possibly missing components
that could impact the result (amplifiers, discriminators, cabling?)
Accuracy of return rates (cal and sat)
Non-linearities of detection components
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CoM model validation

No direct means of validation available

Range bias estimates are NOT useful, on an individual basis, to validate CoM values

Indirect: comparison of RMS of expected distributions and the empirical ones
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Reasonable agreement found for all modes of operation
No systematic effects

ALL: 54% within 5 mm RMS; 75% within 10 mm
TOP 25: 59% within 5 mm RMS; 78% within 10 mm




CoM model validation

No direct means of validation available
Range bias estimates are NOT useful, on an individual basis, to validate CoM values

Indirect: comparison of RMS of expected distributions and the empirical ones

Model agreement with RMS of NP distributions
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Sensitivity analysis

Explored some factors in a simple one-at-a-time approach:
Fit parameter n. Dictates shape of optical transfer function, encapsulates complex optical effects
Return rate. Changes the shape of the probability distribution of detections
Inaccurate system details: doubling detector jitter

Inaccurate system details: doubling detector rise time

Three stations used as starting points: HERL 7840, MATL 7941, YARL 7090
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Sensitivity analysis

Fit parameter n:

STA1 +0.1 n: 0.3 Sud 0.0 0.2 1.2
-0.1 n: -0.6 B -84 -89 -1.5
STA2 +0.1 n: 0.3 Ll 0.2 0.3 2.4
-0.1 n: 0.0 -0.7 -0.1 5.2 0.0
STA3 +0.1 n: 0.5 I 0.2 0.4 0.7
-0.1 n: -0.2 8,5 ~8:3 8.3 =0.3
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Sensitivity analysis

Detection rate:

STA1 x8 13 1.2 1.8 2.8 33.3
10% to 70%

STA2 1/4 -0.1 -0.5 0.0 -0.3 =3.5
60% to 15%

STA2 x2 2.8 .1 0.5 0.4 5.0
60% to 99%

STA3 x6 0.2 0.2 0.4 0.1 e
65% to 97%

STA3 1/4 -0.1 0.0 -0.1 -0.3 -0.4
<5%
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Sensitivity analysis

Detector jitter x2:

STA1 -1.0 -0.1 -0.8 -0.6 -0.2
STA2 -0.5 1.5 -H.3 8.4 =1.3
STA3 -0.5 -2.4 -0.3 =8.1 =1.9
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Sensitivity analysis

Detector rise time (+120 ps):

STA2 -2.0 —B.8 -1.0 o . -4.0

STA3 -0.6 =28 =@.3 =B 2 =dod
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Sensitivity analysis

Total range:

STA1 243 F 2.4 3w G 2i 0.
STA2 3.0 5.0 1.5 1.6 9.0
STA3 1.4 4.8 1.0 1.5 4.0

Max error pessimistic case: 1-3 mm small targets and LAGEOS
5-10 mm Etalon
10-30 mm Ajisai

Comparison of computed and empirical distributions indicates situation is much better

None of this informs us about whether models are fundamentally flawed somewhere
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Consequences

If range biases are estimated inaccuracies in the CoM values have no impact on station coords.

How about users of TRF and SLR data?

Perfect observation. Height perfectly estimated

satellite  —

ground station
-
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Consequences

If range biases are estimated inaccuracies in the CoM values have no impact on station coords.

How about users of TRF and SLR data?

Biased observation. Positive residual

ground station

-
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Consequences

If range biases are estimated inaccuracies in the CoM values have no impact on station coords.

How about users of TRF and SLR data?

Biased observation. Height wrongly estimated

satellite

ground station

‘ bias absorbed
in height (mainly)
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Consequences

If range biases are estimated inaccuracies in the CoM values have no impact on station coords.

How about users of TRF and SLR data?

Biased observation. Residual?

ground station

| bias absorbed
B in height (mainly)
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Consequences

If range biases are estimated inaccuracies in the CoM values have no impact on station coords.
How about users of TRF and SLR data?
CoM mismodelling behind some of the previously estimated biases

Knowledge of error budget improved — transfer of biases to other targets

" A : N
‘ CoM innacuracies '
intensity dependent effects
timer non linearities

ground calibration

other equipment issues
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