

British Geological Survey

Gateway to the Earth

Updated Centre of Mass Correction Tables for LAGEOS, Etalon, LARES, Starlette and Ajisai

José Rodríguez¹, Graham Appleby¹, Toshimichi Otsubo²,

¹BGS Space Geodesy Facility, UK ²Hitotsubashi University, Japan

© NERC All rights reserved

Context

SLR and VLBI scale difference ITRF2014 (1.37 ppb)

Allowing in the orbit solutions for the presence of observational errors reduces this difference by ~50%

Identifying the actual error sources is very hard:

Centre of mass corrections? Timing devices? Site surveys? Operational inconsistencies? Modelling deficiencies? ...other?

Context

SLR measurements are made to the reflecting surfaces of the satellites: an offset to their centre of mass (CoM) is required to solve the equations of motion

Time of flight measurements are only as good as the CoM values applied (among other things)

Station heights estimated from SLR will absorb errors in the observations by a ratio of ~1:1

Aims

Reassess centre of mass (CoM) models used by ILRS analysts for ITRF2014

Improve current standards incorporating effects previously only approximated

Recompute everything from scratch using the latest data available

Assess the impact on the overall errors estimated in the orbital solutions

If we had perfect CoM values, estimated range errors could be transferred to other targets

LAGEOS

LAGEOS

Answer: Target signature effects

CoM modelling steps

1. Compute ideal **optical response** of laser retroreflector arrays (LRA)

2. Determine **best fit** response using empirical data from distributions of single-photon detections

3. Compute CoM values using system specifications

Otsubo & Appleby, System dependent CoM corrections for spherical satellites, 2003

1. Optical response function

© NERC All rights reserved

2. Empirical fit

Accumulate single-photon detection data to obtain empirical distributions

We stacked full rate data from Herstmonceux station (2015-2018), selected, filtered and aligned

- ~ 15M LAGEOS obs.
- ~ 9.5M LAGEOS-2 obs.
- ~ 10.3M LARES obs.
- ~ 1.0M Etalon-1 + Etalon-2 obs
- ~ 4.5M Starlette obs.
- ~ 5.3M Ajisai obs.

What theoretical function fits the data best?

Perform computation for all known system configurations

Input data: hardware parameters characterising system behaviour, average return rates and optical response functions

Perform computation for all known system configurations

Input data: hardware parameters characterising system behaviour, average return rates and optical response functions

Single-photon ranging

An analytical expression is available to compute distribution of returns

Solve numerically using calibration data provided by some stations (estimate from relevant system parameters otherwise)

Perform computation for all known system configurations

Input data: hardware parameters characterising system behaviour, average return rates and optical response functions

Single-photon ranging

An analytical expression is available to compute distribution of returns

Solve numerically using calibration data provided by some stations (estimate from relevant system parameters otherwise)

Multi-photon ranging

Monte Carlo numerical simulation of simplified, ideal detection process

Dependent on some difficult-to-validate assumptions

Comparison of predicted NP RMS with actual NP RMS provides a measure of model performance

Comparison of predicted NP RMS with actual NP RMS provides a measure of model performance

Bigger targets (AJI, ETA) are harder to model

Despite expected caveats models performs reasonably well most of the time

Despite expected caveats models performs reasonably well most of the time

Bigger targets = poorer predictions

Despite expected caveats models performs reasonably well most of the time

Bigger targets = poorer predictions

Most systems well predicted for smaller targets

Despite expected caveats models performs reasonably well most of the time

Bigger targets = poorer predictions

Most systems well predicted for smaller targets

Results

Centre of mass values computed for all stations of the network for 6 spherical satellites

We made comparisons of the estimated range errors obtained with the old and new CoM values

BUT: impossible to separate between range errors and CoM mismodelling

Assessed effect on station heights/frame scale

© NERC All rights reserved

For Etalon, test CoM values remove about 1 cm biases from several stations Very few stations see an increase in RB

very

Actual differences are greater when considering the sign of the estimated biases

New CoM values remove to a large extent the predominant positive bias across the network

LAGEOS

LAGEOS-2

Negative is "good": RB "removed" from stations

Positive is "bad": RB "added" to stations

AJISAI

LARES

Negative is "good": RB "removed" from stations

Positive is "bad": RB "added" to stations

Similar average scale change when estimating RB and when using test CoM values: ~0.6 ppb Or in other words: both solution types have **increased** station heights Agreement between the scales realised by SLR and VLBI is improved Have we solved the RB problems...?

|RB| remaining using new CoM values

Range biases do **NOT** disappear using the new CoM values

© NERC All rights reserved

Summary

We have an improved CoM modelling for the spherical geodetic satellites

Updated modelling takes into consideration more details about the measuring process

Results introduce significant differences in the CoM offsets for LAGEOS, LAGEOS-2, Etalon and AJISAI

Differences for LAGEOS introduce a scale change in the SLR frame

Caveats:

- incomplete knowledge of some systems details
- model only considers ideal, linear behaviour
- realistically, accuracy no better than ~2-3 mm for LAGEOS and ~6 mm for Etalon/AJISAI on average across the network; much worse for individual cases

CoM alone can not possibly fix everything we see in the orbital solutions

Thank you

LAGEOS - LAGEOS-2 return rate difference

3. CoM computation (multi-photon systems)

