
Implementation of the pointing model
for the 40m OAN radiotelescope

T. Alonso Albi, P. de Vicente,
V. Bujarrabal

Informe Técnico IT-OAN 2010-3

1

Change Record

Version Date Author Remarks
1.0 20-Jan-2008 T. Alonso Albi First version

CONTENTS 2

Contents

1 Introduction 3

2 User operation 3
2.1 Generating the program binaries 3
2.2 Description of theOAN 40m Pointing Modelapplication 4
2.3 Final remarks . 9

3 Technical implementation 11
3.1 Design and development considerations 11
3.2 The Javadoc . 11
3.3 Packages description .. . 13
3.4 The HelpSet . 17
3.5 Dependencies . 17
3.6 Application Flow .17

1 INTRODUCTION 3

1 Introduction

We analyze the software implementation of the pointing model for the 40m radiotelescope. The
aim of this application is to assist in the process of solvingthe equations of the pointing model
as described inIT OAN 2003-7[1], IT OAN 2007-26[2], and IT OAN 2008-7[3]. First we
will describe how to compile, run, and use the program. Next we will introduce the technical
specification of the application, and we will continue with adetailed analyze of the code.

2 User operation

In this section we will introduce how to compile, run, and usethe program from a user point of
view. It is asumed that the user is running the Linux Operating System.

2.1 Generating the program binaries

The application source files can be downloaded from the CVS repository at Yebes.OAN 40m
Pointing Modelis a Java program that requires at least aJava Runtime Environtment(JRE)
version 1.5 to be executed. However, to compile the code aJava Development Kit(JDK) version
1.5 or above is required. This JDK can be downloaded atjava.sun.com[4]. The recommended
steps to follow before proceeding with the compilation are as follows:

• To check for a possible previous installation of a Java JRE/JDK. You can type in a console
java -version, and alsojavac <some file>to check for thejavacprogram that allows to
compile the code. If the version is 1.5 or above and thejavacprogram exists (so a JDK is
installed), then it is not necessary any update, and you can skip the following points.

• To check for a possible previous non-complete installation(the JDK itself is installed,
but the previous commands links to an old JRE/JDK version). You can navigate through
/usr/javaand /user/lib/javaor /user/lib/jvm. If you find a jdk directory version 1.5 or
higher, check the./bin/javaand./bin/javacprograms to exist. If you find them, you can
skip the following step.

• Otherwise, root privileges are required for the installation. However, if any problem
arise during the installation of a new version it is possibleto copy the JDK directory
of any other computer with the same operating system installed, and copy the entire JDK
directory in some path of your user home directory. In this case, some little modificacions
will be required to execute the application (instead of commandjava, use the path to your
local program/home/user/.../jdk../bin/java).

Once everything is ready to compile, you can check themake.shscript provided with the
distribution. This script must be edited to update the variablesDEV _ROOT with the current
path, andJAV A_HOME with the path of the jdk directory found or installed in the previous
steps. Note a file separator string/ must not be present at the end of any of these variables.

Now you can ensure the script is executable (chmod 666 make.shwill enable it), and you
can execute the script. No error should arise, but perhaps some warning/s. When finished, go

2 USER OPERATION 4

to subdirectory make and execute thepointingModel.shscript. The application window will
appear. If an error occurs, possibly you will have to modify the script to point to the correct
java program (including the full path) if you decided to copy the JDK directory from another
computer.

The script creates a/obj and/docsubdirectories with the program binaries and the Java doc-
umentation. The Java documentation (properly known as Javadoc) can be visualized with any
web browser starting from the/doc/index.htmlfile. It will be described in detail in section 3.2.

If you plan to develop or modify the code, the use of a Java IDE (Integrated Development
Environtment) is strongly recommended. The IDE used in the development wasEclipse SDK,
downloadable fromwww.eclipse.org[5], which is the one mostly used, and the distribution
provides with specific configuration files to create anEclipseproject. The Java development is
beyond the scope of this document.

2.2 Description of theOAN 40m Pointing Model application

The application can be optionaly executed with an special command-line optionenable fits,
adding these words at the end of the execution script. The endof the file should read something
like
org.oan.swing.LaunchApplication enable fits. This is not the default in the distribution, so it
should be enabled manually. This option allows the user to reduce and manage optical images
in .fits format that shows the position of some star at some instant. The telescope is pointed to
the theorical position of the star in azimuth and elevation,but the star is not located at the center
of the CCD camera (i.e. the .fits image) due to the pointing errors. The date and the position
of the antenna can be read from the .fits header, that containsthis information in an special
format in addition to the image itself. The format of the header will be described in detail in
section 3.3. All images presented in this document are shownwith this specific feature enabled,
although it is now obsolete and substituted by a more sofisticate treatment of the antenna data
in radio wavelengths, using Gildas software.

The first window that appears when the program is started in shown in figure 1. At the
right a black square shows the picture region where some charts with the predicted and ob-
served pointing errors can be visualized. At the left the current model parameters are listed in
arcseconds. Each parameter has a check box that can be checked or unchecked to fix a given
parameter and maintain it constant. The mouse cursor can be moved to any of these parameters
and left there during a second to show a pop-up message with the meaning of this parameter.
The current implementation of the equations (see [3] for example) discards parameter 6.

Below, the residual parameter box informs about the mean geometric variance of each pa-
rameter in a given fit. This is the expected (mean) error of each fitted parameter. This value will
not be shown if a fit is performed with any of the parameters fixed.

The mean deviation shown at the bottom provides the current mean geometric variance in
the current chart shown at the right. Depending on wether thechart shows azimuth errors or
elevation errors and the goodness of the fit, the value can vary substantially. However, the
residual parameter should be in the same range of those values.

A menu is visible at the top with common main options. These options are summarized
below, sorted in the same order as any user should use them provided that an input file is

2 USER OPERATION 5

Figure 1:The program initial window.

available.

• Reading an input file.

An ASCII/binary input file can be imported into the program by clicking File - Read File.
TheASCIIfile should contain azimuth, elevation (degrees), azimuth error, elevation error
(arcseconds) as the first four fields (and optionally the starposition x, y offsets from the
center of each image (pixels) and the file name, to complete 7 fields), separated by blank
space/s. The binary file contains a whole set of observationswith data like azimuth and
elevation, azimuth and elevation pointing errors, and alsothe information contained in
each header of the .fits files. The program will first try to readthe file as anASCII one,
and in case of error it will be treated as binary. Both theASCII and the binary files are
created by the .fits reduction process that is detailed later.

The current version also supports ASCII files generated by Gildas software.

After the file is imported, a chart with the observed azimuthsand elevations will be shown.

• Executing the Model.

TheExecutemenu and option allows to fit the observations according to the implemented
model. The model parameters (P1, ... P9) will be fitted by least-squares using the math
libraryLAPACK(more precisely the subroutine calleddgells). The parameters will appear
in the corresponding text boxes, as well as the residual parameter.

2 USER OPERATION 6

Figure 2:Example of a fit showing a chart with the pointing errors in elevation.

• Editing the observations.

The Chart menu provides access to some useful charts that can be used to evaluate the
quality of the fit. When selecting charts that show both the observed and the theorical
pointing errors, the mean deviation of the fit will be also displayed. This deviation repre-
sents a mean (geometric) variance of each observation. The usual criteria for a good fit is
that this deviation should be lower thanbeam/4, wherebeamis the beam of the telescope
in arcseconds.

Bad observations can be edited and removed withEdit - Observations(see figure 3). All
calculations will be automatically updated. The observations can be sorted by any of the
columns. It is specially useful to sort in decreasing order of the discrepancy between the
predicted and the observed pointing errors. This allows to easily spot bad observations
and remove them. A given .fits file can be visualized to check a specific observation by
clicking on the name of the file.

In the main window, there is one checkbox for each of the parameters of the model. They
are useful to fix some parameters and study the dependence of the goodness of the fit
when varying each of them. Simply check the box to fix some parameter, modify its
value, and execute the model again. The fixed parameter will remain constant. It is also
possible to modify a given parameter without neither checking the box nor executing the
model. Simply change the value and select the chart to display again to update it. The
current implementation does not allow to re-fit the parameters by least squares after a

2 USER OPERATION 7

Figure 3:The window to edit observations. In this example, three observations are identified as wrong
and deleted from a total of about two hundred.

given parameter is modified and fixed. This means that any change on the parameters
will have no effect in the other parameters if they are fitted again.

• Saving Options.

The current fit and the observations can be exported to a binary file with option File -
Save state. This binary file can be imported later. Not only the observations, but also
any other state of the program will be recovered exactly as when it was saved. This is
specially useful to reduce the observations in different days or different computers, or to
save a given set of bad observations that were removed from the fit with optionEdit -
Observations. It is recommended to save the current state of the program frequently.

The current chart can be saved in .eps (Encapsulated Postscript), .jpg, .bmp, .gif, and .png
picture formats. A special format .graphic is available to export the chart as an script to
be later executed with theGILDASpackage.

• Exporting Options.

There are some export options in theEdit menu. The value of the parameters, as well
as the current chart shown can be copied to the clipboard to paste them later in another
program. The chart copy-paste process is known to fail in OpenOffice, while it works in
any picture editor tested so far.

An special export option is also available asFile - Export results. The output is aLATEX
file that can be compiled to .pdf and opened directly through this application. The .tex
file will contain a table with the fitted parameters, all charts, a description of the model
implementation, and possibly some other tables with a summary of the processed scans
and possible warnings thrown during the reduction process.This useful option provides

2 USER OPERATION 8

a quick, detailed, and user-friendly output for the currentresults of the fit. The version of
the program that creates an specific output report can be checked in the first line of the
source code of the .tex file.

If an input file is not available, but a set of observations in the form of .fits files are locally
available, the user should reduce these observations to create an input file. Here is when the
command-lineenable fitsis required. TheFile menu will provide with aProcess fitsoption for
such task.

Next the basic steps of the .fits reduction process are summarized.

• Importing .fits files.

Once you click onFile - Process fitsthe program will prompt for an input directory to
import the .fits files from.

The .fits files contain optical CCD images taken through a refractor telescope that was
located at the subreflector of the radiotelescope. As statedbefore, this obsolete feature
was a provisional test tool and the program was designed to accept this particular setup.

• Reducing the .fits files.

Once imported, the window will show the first (alphabetically sorted) .fits file (see fig-
ure 4). It is recommeded to enlarge the application window close to full screen before
working with these files.

Figure 4:The .fits reduction process showing and image where the user set the star position.

2 USER OPERATION 9

In the upper - left corner you will see the name of the current image, and the number of
this image from a given total number of them to reduce. In the bottom - left corner you
will see a message with the position of the star detected in this image, or a red message
indicating that no star was automatically detected.

The buttons provided below the image allows to change to the next or the previous image.
A "No star" button is provided if a wrong star is detected automatically. The program
contains a simple star detection algorithm that works well most of the times, but, if a star
is not centered correcly you can click with the mouse on the star position to correct it. To
move the star position just one pixel, click with the mouse ata position close to a corner
of the image with the keySHIFT, ALT, or CTRLpressed. The right button of the mouse
can also be pressed before the left click (at the left or rightcorners) to navigate faster
through the input files. You can go to the 10th next image, or 100th next image using a
double click. The reduction process can be canceled by clicking the mouse with two of
the three modifiers (ALT, CTRL, SHIFT) pressed at the same time.

An automatic reduction button is provided. Once clicked, the rest of the reduction process
will continue in a fully automatic way. It is not recommeded to use this feature unless you
want to quickly test the results and you have good observations with a dark background
and point-like stars, with nothing or little pixel saturation.

The process will continue until the next button is clicked inthe last image. Then three
files: the binarypointing.bin, the correspondingASCII pointing.dat(with just 7 fields:
azimuth, elevation (degrees), their pointing errors (arcseconds), x and y offsets of the star
from the center (pixels), and the file name) and theASCII file pointingWarning.datwill
be created in the same folder of the .fits files. The first two files will be ready to be fitted.

• Re-processing the .fits files.

The .fits reduction process can be started again at any time provided that the state of
the program is saved. It is recommended to load the generatedpointing.bin file before
doing that to ensure that all the important data is loaded andsaved. If the path of the .fits
files changes (because a change in the user or the computer forexample) the program
will prompt for a new path with the same .fits files. If new .fits files are detected when
re-processing, the program will ask if those files should be added to the current ones.

The application also contains aHelp menu that includes most of the information provided
in this document so far (figure 5).

2.3 Final remarks

The implementation is expected to be accurate for relatively low corrections up to one or two
degrees. The pointing errors in azimuth and elevation are measured as celestial angles, not
coordinate angles. As a consecuence, the equation of the pointing error in azimuth implemented
in the code is multiplied by the cosine of the elevation in comparison with the one found in any
of the cited references (see [3] for the last up-to-date equations). This means that you would
not expect the azimuth correction to get higher and higher when pointing close to the cenit.

2 USER OPERATION 10

Figure 5:The help window with the getting started page that introduces the user into the problem of the
pointing models.

By maintaining all the azimuth pointing errors in the same range, a better fit is obtained with
LAPACK, since all the points are treated with a similar weight.

The pointing errors produced during the .fits reduction process are true angles on the celes-
tial sphere. This means that the azimuth (and elevation) corrections are performed following a
curve for points close to the cenit. This is known to improve the residuals for high elevation
points (by about 1 arcsecond or 5% in the examples shown in theprevious charts), and modifies
the resulting P parameters by approximately 10%.

The example provided in the charts shows a final deviation of 20" in the fit, both in azimuth
and elevation. However, this value should be taken with caution since some issues were found
and corrected in the process of creating the .fits files and measuring the field of view and in-
clination angle of the CCD camera after this example was created. The expected error in the
fit to new observations is much lower. In addition to that, some other improvements in the
model are subject to discuss and implement, such a correction for differential refraction or an
improvement in the accuracy of the pointed position and the date in the header of the .fits files.

We would like to stress on the importance of saving the state of the program everytime
a given task is finished, and to load this file everytime the application is started. As stated
before, some of features are in a provisional status and theycould require further development
or improvements as long as other tasks in progress for the 40mradiotelescope are completed.

3 TECHNICAL IMPLEMENTATION 11

3 Technical implementation

In this section we will describe the technical implementation of the model from a developer
point of view. This part of the document assumes the reader isfamiliarized with the basics in
the development of (Java) applications.

3.1 Design and development considerations

TheOAN 40m Pointing Modelapplication is implemented in pure Java 1.5, using the standard
encodingISO-8859-1. In its first version, it is organized in 7 packages containing 30 Java
source files (Java classes) with about 15000 lines of code (2000 of them belonging to documen-
tation). The application is written [6] and documented [7] according to the standards of quality
established and recommended bySun Microsystems.

The development of the first version were carried on between November and December,
2007. All the code was written during one month, mainly because most of the Java classes in
the code are based on previous work by T. Alonso. Only 8 Java classes in 3 packages are in
fact new work, among of them the .fits methods to interoperatewith the .fits external library, the
Graphical User Interface(GUI) as an user front-end to the application, and the mathematical
implementation of the pointing model using the Java versionof LAPACK.

The program was designed according to a previous implementation in C++ by P. de Vicente.
Mathematically speaking, both implementations are almostidentical. In terms of the GUI, both
implementations are quite similar. In this Java version further development was consider to
give more flexibility to the user in some common tasks, like reducing the .fits files, saving and
reading the work in progress, or exporting the results.

This new implementation in Java solves some issues of the previous one. The availability
and compatibility of some libraries inC++ with the ones actually in use in the new versions
of KDE was a problem. Also, this implementation can be executed either in Unix/Linux, Win-
dows, Mac, or even in a mobile phone with some minor modifications. In the last few years
Java have grown in such way that is now the main programming language in consideration for
astronomical projects. In this way, it will be possible to integrate this piece of software into the
contributions to theALMA Common Software(ACS), which is being developed in Java.

The application will be distributed under the terms of the LGPL license. This is in agreement
with the distribution policy of the dependence libraries and provides rights to third party users
to freely distribute the source code in its original or modified versions, even in the scope of
possible merchandising, provided that the conditions in the LGPL license agreement remains
unviolated.

3.2 The Javadoc

In the Javadoc it is possible to find the fullApplication Program Interface(API). This includes
all the public methods and fields used within the application, including the input and output
parameters for each method with a description of the purposeof each of them. The Java doc-
umentation is automatically generated by thejavadoctool already integrated in the JDK using

3 TECHNICAL IMPLEMENTATION 12

Figure 6:The main Javadoc window showing the summary of the packages in the application.

3 TECHNICAL IMPLEMENTATION 13

the comments that the developer introduces in the code following certain rules [7]. This in-
formation is intended to be used as a reference source for developers (already integrated in a
given IDE when a project is configured) and is subject to change in possible future releases.
A considerable amount of private methods and fields not visible in the documentation are also
present, but it is not necessary to take care about them, evenfrom a developer point of view,
unless an important change is made to the code. Any further modificacion of the code should
continue the standards of quality of this implementation toensure that this Javadoc can continue
to be generated and used as a reference.

3.3 Packages description

The application is organized in packages (directories) that are responsible of different blocks in
the execution of the program. All modern applications are organized in a similar way, separating
blocks like input/output operations, the math operations,the charts or graphic generation, the
error reporting and catching, or theGraphical User Interface. This modular design is the best
way to maintain a high level of independence between different blocks in order to improve or
correct errors, perform a further development by the same orany other team of developers, or
for re-utilization of the resources in different projects.There are 7 packages and 30 Java classes
in this application which are analized here shortly. Additional information can be found in
the Javadoc documentation, available after compiling the source code, or through the reference
pages in the application help system.

• org.oan.chart.

This package contains the classes developed to create charts using theJFreeChartpack-
age [8], to export charts as a script forGILDAS, and to read and write pictures in several
graphic formats.

– ChartElement. This class allows to create Java objects that contains the properties
of aJFreeChartchart like the data series, the chart type, the labels for theaxes, and
so on.

– ChartSeriesElement. This class provides secondary objects for theChartElement
class that represents the data series to be displayed, including the x and y datasets,
the shape and size of the marker for the points, possible linestrokes or regressions,
and so on.

– CreateChart. This is the core of the package. TheChartElementobject, hold in a de-
veloper friendly way, is translated to aJFreeChartobject, ready to be displayed, us-
ing the constructor of this class. This class also provides output to .eps and .graphic
formats, among others.JFreeChartsupports x-y charts, pie charts and bar charts, but
here a simplified version of the originalCreateChartclass has been implemented,
supporting only x-y charts.

– DataSet. This class provides methods to transform the x and y datasets between dif-
ferent formats, to extract subdatasets, to obtain the maximum and minimum values,
or to sort them in different ways.

3 TECHNICAL IMPLEMENTATION 14

– Draw. A class to draw pictures, lines, or text with easy to create some panels. It was
used to create the About box.

– Picture. This class reads and writes picture in a wide variety of formats.

• org.oan.fits.

This package provides the tools to manage .fits files.

– CCDElement. This class holds the properties of the CCD camera and providestools
to transform the horizontal offsets into sky angles.

– FitsHeaderElement. This object holds the header of a .fits files and provides meth-
ods to access the data that contains.

The current format of the .fits header includes information about the size of the
image, the color resolution, the telescope and date, the source and the position of
the antenna with possible pointing corrections applied. Since the field of view of
the CCD is about 40 arcminutes, which could be lower than the pointing errors, in
some cases it is necessary to perform a first correction of thepointing in order to be
able to catch the star inside the field of the CCD. An example table with the current
format of the header is shown in table 1.

– FitsIO. The core of the package. It reads a .fits file providing both the Picture and
theFitsHeaderElement.

– FitsProgram. A class that sorts a set of .fits files and contains a method to automat-
ically calculate the position of a star in a .fits image. It wasused as a program at
the very beginning to automatically reduce the .fits files, but soon it was clear that a
fully automatic reduction was not acceptable.

• org.oan.io.

This package provides input/output support for several tasks in the program.

– ApplicationLauncher. Provides general methods to execute programs with indepen-
dence on the operating system the user is running, and, in thecase of Linux, with
independence of the desktop (KDE, GNOME) in execution.

– IOConstant. General constants for input/output like the path separator, which de-
pends on the operating system, or the separator used in theASCIIfiles.

– LATEXReport. A special class to write documents to Latex with easy.

– ReadFile. A class to read files, access the different fields or columns,and get a list
of files or directories in a given path.

– Serialization. A special class to write and read binary files that can virtually save
any abstract object or data in the Java language. This feature of the Java language is
used to save and recover the state of the application at any time.

– SystemClipboard. Methods to access the system clipboard to copy or get contents
like text or images.

3 TECHNICAL IMPLEMENTATION 15

Table 1: Example header of a .fits file.

HEADER ENTRY VALUE COMMENT

SIMPLE T
BITPIX 8
NAXIS 2
NAXIS1 760
NAXIS2 570
DATAMIN 0
DATAMAX 255
TELESCOP ARIES21 Telescope Name
ORIGIN OAN Organisation or Institution
CREATOR Manual pyfits Software (including version)
TIME 2007_11_13 15:43:4 Time
AZIM 253.984 Azimuth
ELEV 84.462 Elevation
SOURCE Vega Source
RA 18.616 RA
DEC 38.784 DEC
P1 0.000 Az Encoder Point
P7 -2700.000 El Encoder Point
AZCORR -0.278 az correction
ELCORR 0.000 el correction
HISTORY Created by ImageMagick.

3 TECHNICAL IMPLEMENTATION 16

– WriteFile. Provides a way to write simple text files.

• org.oan.math. A package the provides useful math operations.

– Constant. Holds math constants like conversion from degrees to radians and vicev-
ersa, among others. The same math constants are used everywhere in the code.

– Functions. Provides math functions like degrees/radians normalization, or format-
ting the coordinates.

– Matrix. Provides support for matrices, including operations likesolving linear sys-
tems.

• org.oan.pointing. This class solves the pointing model itself.

– ModelElement. An object that holds the parameters of the model and provides meth-
ods to obtain the predicted pointing error in azimuth and elevation.

– PointingModel. The class that solves the pointing model usingJLAPACK[9].

– ScanElement. An object that holds a given scan or observation. This includes the
azimuth, elevation, x and y offsets, the file name, theCCDElementwith the prop-
erties of the CCD camera, and theFitsHeaderElementwith the header of the .fits
file.

• org.oan.swing. This package provides the swing (graphical) implementation of the appli-
cation.

– DoubleBuffer. Provides double buffer support, that allows to draw a chartfor exam-
ple without seeing how every line is drawn.

– GraphLayout. Provides a layout to arrange different components in a panel with
double buffering support.

– GUI. The core of the application is theGraphical User Interfacethat creates the
program window and responds to the user operation.

– LaunchApplication. The class that is called in the application launch. It is merely
used to create a splash window and to call to the GUI.

– SplashWindow. The class to create a very simple splash window, just an image
which is displayed while the application in starting and allocating it resources.

• org.oan.util. A class to catch and respond to possible errors during the execution, and to
hold the program version.

– PointingModelException. The class which is called whenever a given predicted error
occurs. For example, an error occurs when the user reads a binary file which is
first treated asASCII, but no error is thrown since this is catched and treated as
’predicted’.

– Version. Holds the name of the application, the version, and (hopefully in the future)
a log of changes.

REFERENCES 17

3.4 The HelpSet

The helpset are the contents displayed in theHelp menu. These contents are mainly web pages
with some special support files organized according to theJavaHelp 2.0specification [10]. The
detailed analyze ofJavaHelpis beyond the scope of this document, but it must be noted that
any further modification or development of the help menu should take use of the help authoring
tool JHelpDev[11].

3.5 Dependencies

The application needs 13 .jar files (external libraries) to be executed. All these libraries are orig-
inal and unmodified work from their respective authors distributed under LGPL or compatible
licenses. They are described here shortly.

• JFreeChart. The JFreeChartlibrary [8] dependencies includes thejfreechart-1.0.3.jar
and thejcommon-1.0.6.jar. Updated or older versions of these packages could work
without problems, but it cannot be guarranteed.

• JLAPACK. The JLapacklibrary [9] includes the fileslapack.jar, xerbla.jar, f2jutil.jar ,
andblas.jar.

• TheJavaHelp. The .jar filejhall.jar [10] is necessary to show the help menu.

• .fits files. The library fits.jar [12] is used in this implementation.

• FreeHEP. TheFreeHEPlibrary [13] provides output to .eps (Postscript) format inJava. It
includesfreehep-graphics2d-2.0.jar, freehep-graphicsio-2.0.jar, freehelp-graphicsio-ps-
2.0.jar, freehep-io-2.0.1.jar, andfreehep-util-2.0.1.jar.

3.6 Application Flow

The program flow is shown in figure 7. There are three main arms in the picture representing
the three main activities of the program: the .fits reductionprocess, the process of reading an
input file and fitting the observations, and the process of exporting the results. The output from
the .fits reduction process can be used as an input for the pointing model solving process. The
same happends with the state of the program saved to a binary file. In this case, and only in this
case, it is possible to re-process the .fits files if the state was saved after the reduction process
finished and the file was not overwritten later. In the processof solving the pointing model the
observations can be edited to select which points are to be fitted.

References

[1] P. de Vicente,Algorithms to be implemented in the Antenna Control Unit, IT-OAN 2003-7.

[2] P. de Vicente, A. Barcia,Deconstructing a pointing model for the 40m OAN radiotele-
scope, IT-OAN 2007-26.

REFERENCES 18

Figure 7:Program flow.

REFERENCES 19

[3] P. de Vicente,Checking the pointing corrections implementation for the 40m radiotele-
scope, IT-OAN 2008-7.

[4] The Java JRE/JDK 1.5 can be downloaded at java.sun.com.

[5] TheEclipse SDKproject, downloadable at www.eclipse.org.

[6] Article on code conventions in Java, http://java.sun.com/docs/codeconv/.

[7] Article on how to write comments for the javadoc tool, available at
http://java.sun.com/j2se/javadoc/writingdoccomments/.

[8] JFreeChartcan be downloaded at www.jfree.org/jfreechart/.

[9] JLapackcan be downloaded at http://www.netlib.org/java/f2j/.

[10] TheJavaHelpreference page is available at http://java.sun.com/products/javahelp/.

[11] JHelpDevcan be downloaded at http://jhelpdev.sourceforge.net/.

[12] Reference page for fits utilities at http://fits.gsfc.nasa.gov/. Package nom.tam.fits can be
downloaded at http://heasarc.gsfc.nasa.gov/docs/heasarc/fits/java/v0.9/.

[13] FreeHEPproject page available at http://java.freehep.org/.

