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1. Introduction 
 
 
 
 
The very first step when we seek for the understanding of phased array antennas is the 
study of these systems in the ideal case, in a classical way [1], and this will be the first 
point of the document. The rest of the text will be dedicated to present and analyze 
some of the causes of the displacement between this ideal case and the real world. One 
of these causes is the mutual coupling [2].  
 
Mutual coupling is the electromagnetic contribution of an excited antenna (transmission 
or reception are equivalent) to any other antenna in its surroundings. It is essential to 
understand where does this coupling come from, how much does it affect, which 
parameters may help to control its effect and of course, how can we compute it and 
relate it to the rest of classical parameters of an antenna system. 
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2. Classical Array Theory 

 
 
 
 
A good approach to classical array theory may be found in chapter 3: Arrays, from the 
book Antenna Theory and Design, W.L. Stutzman and Gary A. Thiele [1]. This section 
contains a brief summary of the most important issues of this book. 
 
We can consider the case of a uniform linear array of N elements uniformly excited and 
driven by a phase ramp, as shown in Fig 2.1. Taking the first element as the phase 
reference, the far field pattern is given by:  
 

)...1()( )1(
0

Ψ−Ψ +++= njj eeEE θ       [Eq. 2.1] 
 
Where δθ +=Ψ )sin(kd  is the phase correction for adjacent antennas. )sin(θkd  is the 
phase difference due to the position of the antenna and δ  is the phase shift due to the 
excitation of the array. k is the wave number ( λπ2=k ), λ  is the free space 
wavelength and d the distance between adjacent antennas.  is the E field of an 
isolated element. 
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Fig. 2.1: Linear Uniform Array of N elements 
 

factor (AF) takes into account the contribution of all the excitations 
 along the array. For the general case: 

=
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rray is uniform and the excitation phase shift can be separated from the 
e above equation becomes: 
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The absolute value of this sum is: 
 

)2/sin(
)2/sin()( 0 Ψ

Ψ
=Ψ

NIAF        [Eq. 2.4] 

 
This expression is maximum for Ψ = 0 and the maximum value is NI0. Dividing this 
into Eq. 2.4 gives the normalized array factor: 
 

)2/sin(
)2/sin()(

Ψ
Ψ

=Ψ
N

Nf         [Eq. 2.5] 

 
This formulation let us calculate the maximum of the normalized array factor absolute 
value (the pointing direction of the array). But some other points need to be remarked 
first: 
 

• The minor lobes are of width 2π/N in Ψ and the grating and mayor lobes twice 
this width. 

• SLL: |Maximum value of largest side lobe|/|Maximum value of main lobe| 
decreases with N. 

• The main lobe narrows as N increases. 
• There are N-2 side lobes and 1 main lobe in each period of Ψ (2π). 
• |f(Ψ)| is symmetric about π. 

 
The θ pointing direction of a uniform linear array is: 
 

)(sin)sin(0)sin( 1 kdkdkd δθθδδθ −=→−=→=+=Ψ −   [Eq. 2.6] 
 
This equation is also useful for finding the phase ramp which produces a main lobe in 
the desired direction. 
 
At multiples of 2π in Ψ appear the undesired grating lobes, of same size than the main 
lobe. The number of these grating lobes increases as kd increases. It is a very important 
problem for wide band arrays, because the spacing d must be suitable (kd < 2π) for high 
frequencies (k big) in order to avoid the grating lobes and therefore the low frequencies 
will suffer from a very closely spaced array. This brings about some issues as the main 
beam widening. 
 
In the case of planar arrays (MxN elements – x and y directions) everything remains the 
same but the AF becomes: 
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xm and yn are the distances between adjacent elements along x and y directions 
respectively.   
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3. The Active Reflection Coefficient 
  
 
 
 
When talking about mutual coupling it is essential to have some parameter which 
accounts with important information about this effect. Since 1960’s, this parameter has 
been the Active Reflection Coefficient (ARC) [3].  
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Fig. 3.1: Array System 

 
 
The equation definition of the ARC for the mth antenna in a linear uniform array of N 
elements, all of them excited as in Fig. 3.1, is, according to [3]:  
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This parameter measures the amount of coupled signal to the mth antenna for every 
scanning angleθ . Understanding by scanning angle the angle where we can find 
the maximum of the array pattern.  
 
Let’s explain who is who in this equation.  
 

• Smn is the scattering component mn. Is the coupling coefficient between antenna 
n and antenna m, when the antenna n is the only one antenna excited in the array 
and the antenna m (so as the other antennas in the array) is terminated in a 
matched load as in Fig. 3.2 (The figure shows the array configuration for finding 
SmN). It is the relation between the voltage excited in the terminals of the load of 
the antenna m (reflected voltage) and the incident excitation voltage of antenna 
n. Obviously, as we are summing terms in phase in Eq. 3.1, the information 
provided by the ARC is much more complete than the information provided by 
the scattering coefficients alone. They are computed as:  
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Fig. 3.2: Embedded element “m” 
 

•  is the incident excitation voltage at antenna m. For the fully excited array 
(all the antennas are excited as in Fig. 3.1 – notice the difference with Fig. 3.2), 

+
mV
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the phase difference between adjacent voltages must follow a ramp in order to 
scan to the angle 0θ as: 

 
 

0)1(
0

umj
m eVV −−+ =         [Eq. 3.3] 

 
 

o m is the antenna number and belongs to n, which takes values from 1 to 
N (N elements), and the phase of the first element (n = 1) is therefore 0 
degrees. 

 
o  is the terminal voltage. 0V

 
o )sin( 00 θkdu = is the phase shift between adjacent antennas separated a 

distance d for scanning in direction 0θ (notice the sign minus in the 
exponent). 

 
In order to calculate the S parameters as stated in Eq. 3.2 the case is 
different, because only one element is excited (in Fig. 2 is the antenna N is 
the only one excited). Therefore the excitation voltage according to Fig. 3.2 
becomes:  
 
 
0VVn =+  for N = n, 0 otherwise       [Eq. 3.4] 

 
 
In other words, computing the Active Reflection Coefficient of an antenna m for a 
certain angle 0θ , means to calculate the relation between the coupled voltages from 
antennas 1 to N towards antenna m (reflected voltage at antenna m) and the incident 
excitation voltage of antenna m when every antenna is excited so that the maximum of 
the array is pointing to 0θ . 
 
It is important to understand that this number may be computed through Eq. 3.1 by the 
calculation of S parameters. Every of these parameters are calculated in the situation 
when only one antenna is excited and the other antennas end in a matched load. After, 
we have to apply the suitable phase factor to the coupled voltage for the case of angle 
scanning (array fully excited). This is because the coupled voltage to antenna m from 
antenna n when the array is fully excited in order to point to 0θ , is the parameter Smn 
times the excitation voltage of antenna n in the fully excited case. Then we just need to 
apply superposition and sum the contribution of every antenna n, as it is allowed by 
Electromagnetic Theory [1]: 
 

∑ =
+− =

N

n nmnm VSV
1         [Eq. 3.5] 

 
Therefore in order to calculate the Active reflection Coefficient of antenna m it would 
be necessary to compute all the Smn, n = 1…,N parameters through a full wave simulation of 
the whole array. Which means; We would need to feed every antenna once as in Eq. 3.4 
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and then measure the voltage excited in antenna m (the reflected voltage). Thinking 
about computational cost and easiness it is remarkable that in the case of a passive 
arrays Smn = Snm [3]. This fact will simplify the calculus because we only need to feed 
antenna m and then measure the voltage in the terminals of every other antenna 
(including m): 
  

∑
∑

=

−−
−−

=

−−

+

−

===Γ
N

n

umnj
nmumj

N

n

unj
nm

m

m
m eS

e

eS

V
V

1

)(
)1(

1

)1(

)(θ     [Eq. 3.6] 

 
 
For other kind of arrays, like for instance active arrays, we will need to apply directly 
Eq. 3.1. If we want to reduce the cost of the S parameters computation we can separate 
the active devices from the passive array (if possible) and put together all the scattering 
terms after. Another option would be to apply the approximation of section 4.1 and 
Appendix 1. It is explained for edge elements but is likely to be used for inner elements 
too.  
 
We can see how depending on the S parameters (dependent on the antenna elements), 
the elements spacing, the scanning angle, the array configuration, etc. it is possible to 
get a lower Reflection Coefficient than in the single case (only S11 present – notice that 
this S11 will also differ from S11 in the array case). 

 

3.1 Array Pattern and the Active Reflection Coefficient 
 
 
 
We can relate the Active Reflection Coefficient to the Array Pattern of an array pointing 
to direction 0θ  by developing the common equations for array theory and applying the 
suitable modifications concerning to the coupling due to the presence of neighbour 
antennas. In such a way we can then compute modifications in the array pattern by 
means of modifications in the ARC, which now we know how to calculate it. Then we 
will realize how the consideration of mutual coupling affects the classical equations 
described in section 2. 
 
The Electric Field of an array of N elements is: 
 

( ) ( ) unj
N

n
n

jkr

T eV
r

eFrE )1(

1
0, −

=

−

∑= θθ       [Eq. 3.7] 

 
Where: 

 
• ( )θ0F  represents the dominant polarization of the element pattern. 
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•  . It is the total voltage in the terminals of the excited antenna n in 
order to point to direction 

−+ += nnn VVV

0θ . This means an excitation as excitation  as in 
Eq. 3.3.  

+
nV

 
 
• )sin(θkdu = is the phase shift at receiving angleθ  (equivalent transmitting 

angleθ ) between adjacent antennas due to the space shift between them. 
 
 
This equation comes from the well known equation for the field radiated by an element 
located at the origin [4]: 
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If we develop Eq. 3.7: 
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[Eq. 3.9] 
 
 
Therefore, if we know the S parameters of an array of antennas (then we can compute 
the ARC of every antenna) by using the element pattern of a single isolated antenna and 
Eq. 3.9 we can compute the actual Array Pattern accounting with the effect of the 
mutual coupling.  
 
In Fig. 3.3 we can see how Eq. 3.9 performs in the case of 2 half wavelength thin 
dipoles spaced half a wavelength at 9.5 GHz. We believe the small discrepancy between 
the computation of CST (green-circles line) and the above equation (blue-squares line) 
for certain angles (-30 to -50 degrees) is due to the pruning that CST applies to the 
phases during the patter calculation. 
 
Furthermore we can appreciate how, by means of using the classical array theory, 
without accounting for the coupling effect (red-triangle up and black-triangle down 
lines), the Gain Pattern differs from the real case already in such a simple array.  
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Fig. 3.3: Normalized Array Gain Pattern 

 
 
Now the following relation is also true in the general case for a 2D array large enough 
[6]: 
 

),(),( φθφθ r
m

r NGG =       [Eq. 3.10] 
 
Where ),( φθrG  is the realized gain of the array (accounting with losses due to the 
impedance mismatch and assuming no internal dissipation) when this is pointing to 
direction ),( φθ , when the elements are excited to add in phase in that direction. N is the 
number of elements and  is the realized gain of one of the embedded elements 
when only that element is excited in the array. This applies ideally for an infinite array 
or for an array without edge effect.  

),( φθr
mG

 
The relation between the realized gain of an embedded element and the realized gain of 
the isolated element is: 

( ) ( ) ( )[ ]2
0 ,1,, φθφθφθ m

m
r

m GG Γ−⋅=     [Eq. 3.11] 
 
This equation is developed in [6] and puts together 2 conditions of operation of the 
array.  is the realized gain when only one elements is excited in the array, but 
it may be calculated using the active reflection coefficient 

),( φθr
mG

( )φθ ,mΓ , which has a 
physical meaning when every antenna is excited in such a way that the array is pointing 
to the direction ),( φθ .  
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Therefore, we have seen which parameters affect the final array pattern bandwidth and 
shape:  
 

• The element type. (The individual pattern is multiplied by the coupling factors) 
 

• The array configuration: triangular, rectangular, circular… This will modify the 
contributions from the different antennas to the ARC of every element. And this 
will therefore modify the final array pattern.  

 
• The array spacing, for the same reason than the previous case. 

 
Also the presence of a ground plane or similar modifications of the structure will 
modify the ARC and the element pattern (modulus and phase of the S parameters) and 
therefore the array performance. Simulations over the final elements must determine the 
relation between all these parameters in order to offer the desired characteristics. 
 
It is interesting to notice how a good choice of the array configuration and element type 
may offer unexpected results. Is it possible to get a good combination of the phases (for 
instance choosing the spacing carefully) in such a way that a certain increment of the 
array spacing does not necessary affect in a negative way the ARC for the whole spam 
of angles, even if the absolute value of the S parameters will always decrease as the 
spacing grows. 
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4. Edge Effect 
 
 
 
 
The edge elements of a finite array behave differently from those in the inner part. 
Actually, if the array is big enough as stated in [5], the central element will perform 
similar to an element embedded in an infinite array. For instance, for a huge array, the 
central element may be treated as an embedded element in an infinite array, which is 
very useful for checking the performance with a lower computational cost simulation, as 
it is an infinite array simulation. We can see this effect in the following figure for a 
linear array of thin dipoles spaced a quarter of wavelength. The ARC of the central 
element is shown for different sizes of the array. 
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Fig. 4.1: Array Size Comparison 

 
We can see how 11 elements (2.5λ) is already a fair approximation to the infinite array 
behaviour, and 31 elements (7.5λ) is even better. The common size for considering a 
central element of an array as embedded in an infinite array is 5λ (5λx5λ for planar 
arrays) [5]. 
 
However the calculus of the total array performance needs from the contribution of the 
edge elements of the array, which due to the absence of elements in one of its sides have 
an ARC very different from an element in the inner part of the array. It is useful to know 
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how an edge element behave specially in huge arrays, where the central elements may 
be considered as embedded in an infinite array but we want to know what is the 
distortion of the coupling in the outer edge of the finite array. In [5] a limit for the edge 
consideration of an element is given for a special case. 
 
In the next section an analytical expression for the ARC of an edge element in a huge 
array is developed (actually for every element). 
 
 

4.1 Edge Elements ARC approximation 
 
 
 
Let’s see thorough an example how can we get the approximated ARC of an edge 
element, if we know the ARC of an infinite array, in few steps in a simple way and with 
a low computational cost in the case of nmmn SS ≠ (active arrays for instance). 
Everything is developed for a linear array but the same procedure may be followed for a 
2D array. 
 
In the array of Fig. 4.2 we can compute the ARC for the element “6”, which is just the 
following sum, according to Eq. 3.1: 
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[Eq. 4.1] 

 
 
 

7 8 9 1 2 3 4 5 6 
 
 

Fig. 4.2: 9 elements array (array 1) 
 
 
Now if we want to calculate the ARC of an edge element of the array in Fig. 4.3, we can 
assume that the S parameters S’33, S’32 and S’31 of array 2 are very similar to the S 
parameters S66, S65 and S64 of array 1 respectively. This approximation is better as bigger 
is the smaller array, due to the bigger influence of closer elements in the ARC. 
 
 

1' 2' 3' 
 

Fig. 4.3: 3 elements array (array 2) 
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In Fig. 4.4 and Fig. 4.5 we can see the S7n parameters for a uniform linear array of 7 half 
wavelength dipoles placed half wavelength apart (Fig. 4.6 a)). And the S16,n+9 
parameters in a 16 elements array of the same characteristics. The MSE between both 
curves is 2.1699e-004. This means that the difference even for such a small arrays is 
insignificant. The difference in the ARC for those elements will be therefore the number 
of antennas in the surroundings, because the contribution of every antenna which exists 
in both arrays (it is placed in the same relative position with respect to the antenna 
where we want to calculate the ARC) to the reference antenna is quite the same. 
Furthermore we see the situation when we look at the S16,n+9 parameters of a 31 
elements array. It is obvious that the influence of the right elements of the array is 
insignificant when calculating the 6 left S parameters and the self coupled signal (S11 of 
the antenna). 
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Fig. 4.4: S parameters magnitude comparison 
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Phase(S7n) in 7 elements array 
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Phase(S16,(n+9)) in 31 elements array

 
Fig. 4.5: S parameters phase comparison 
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a) 7 elements array at 7th element 

b) 16 elements array at 16th element 

  

       

   

   

            

 
 

c) 31 elements array at 16th element 

 
Fig. 4.6: Reference Arrays for results in Fig. 4.4 and Fig. 4.5 

 
Once we have done this approximation we can do the following deduction: 
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[Eq. 4.2] 

 
Where  has been placed instead of 

 according with the previous deduction about S 
parameters and because the placement of the antennas with respect to the reference 
antenna (antenna “6” in the bigger array) is the same in both cases.  

ujujuj eSeSeS )33(
33

')32(
32

')31(
31

' −−−−−− ++
ujujuj eSeSeS )66(

66
)65(

65
)64(

64
−−−−−− ++

 
These new terms are just the ARC of element “3’” of the smaller array, therefore: 
 

ujujujujujuj eSeSeSeSeSeS )69(
69

)68(
68

)67(
673

')63(
63

)62(
62

)61(
616 )()( −−−−−−−−−−−− +++Γ+++≈Γ θθ

 
[Eq. 4.3] 

 
This equation tell us how to calculate the ARC of any element of an array using the ARC 
of an equivalent element in a smaller array of same characteristics and the S parameters 
missing at the left and right side of the smaller array respect to the bigger array. If we 
generalize this equation we find: 
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Being N the number of elements of the big array and N’ the number of elements of the 
small array and the excess of antennas is equally distributed between the right and the 
left part of the small array (N-N’ must be an even number) for the current formulation. It 
is also important to notice that this formulation is useful only for edge elements of the 
small array, but it may be easily modified to apply the same concept for any element in 
the array. 
 
Furthermore if the smaller array is big enough [5], we can apply the approximation of 
discarding the contribution from those elements in the opposite side of the array respect 
to the edge element of interest.  
 
Finally, if , ∞→N )(θMΓ  becomes )(θ∞Γ , the ARC of any element in the infinite 
array. As more terms we compute in the last sum of Eq. 4.4 a better result may be 
achieved, implying a trade off between accuracy and computational cost. The ARC of an 
edge element of a half-infinite array (or equivalently a very big array) may be computed 
as: 
 

∑ −

=
−

+−∞ −Γ≈Γ
2/)'(

1
)(

)'(,'
' )()( KN

i
uij

iKNMK eSθθ               [Eq. 4.5] 
 
 
In Fig. 4.7, a 16 half wavelength x-axis-oriented thin dipoles array at 9.5 GHz, placed 
along y-axis and spaced 4λ  is used to show the right performance of the method. The 
absolute error of the ARC absolute value approximation for the outer element is 
calculated for scanning angles from 0 to 80 degrees in θ  direction. The curve decays 
with an increasing number of terms computed in Eq. 4.5. The residual error of the 
method must be added to the following result, which in this case is 2 dB. This residual 
error decreases when the assumptions taken in the method are properly fulfilled, for 
instance in the case of big arrays [5]. The convergence of the method occurs for 5 terms 
computed in the approximation. 
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Fig. 4.7: Edge Effect Approximation Error for a 16 dipoles array 

 
 
A paper (attached in Appendix 1) in relation to the edge effect approximation has been 
sent to APS07 (IEEE Antennas and Propagation Symposium 2007). Another paper has 
been sent to Microwave and Optical Technology Letters Journal. 
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5. Some more issues about Array Antennas 
 
 

5.1 Array Symmetries 
 
 
In order to reduce the number of S parameters necessary for the computation of the 
ARC, and therefore the total simulation time, which is critical as far as the computation 
force is also limited, it is important to understand that symmetries of the array can bring 
us benefits. For instance it is the case of a uniform linear array of symmetric equal 
antennas as in Fig. 5.1. Symmetric antennas located at the same distance in the array 
and with the same surrounding neighbourhood (in a mirror sense) have equal S 
parameter. Therefore, we don’t need to compute all of them 
 
 
 

2 4 6 8 

S24 =  S68 
S42 =  S86

 
 
 
 
 
 
 
 

Fig. 5.1: S parameters symmetry 

 
5.2 Simulations 

 
 
Infinite Array simulations are well possible with HFSS software so as with CST 
software. They will provide us with the important information about the central 
elements of a large array. Finite simulations are also possible but the array size is a key 
problem when the computation force is limited. With CST it is possible to select 
between angle scan and frequency scan and reduce the computation cost in this way. 
Anyway, the simulation of a 16 printed dipoles 2D array is likely to be performed with a  
3GB RAM, dual core 2 GHz processor but the number of simulations able to be 
performed won’t be the best possible. This issue is still under consideration. 
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5.3 The UWB case 
 
 
Ultra Wide Band (UWB) arrays from the classical RF point of view are unreal. We can 
talk about UWB antennas in the sense of a wide frequency band in a Voltage Standing 
Wave Ratio (VSWR) sense, or stability of gain pattern. The final wide band will always 
necessarily be subdivided in narrow bands and there is a limitation in terms of beam 
forming. As an example we can see the deformation of the array pattern for 3 situations 
of a linear uniform array pointing to broadside. The array is supposed to work between 
300 MHz and 1 GHz. The spacing is set to be half a wavelength at the lowest, middle 
and highest frequencies of the band. We can appreciate how the array pattern at the 
other frequencies different from the spacing frequency suffers different effects: SLL, 
beam narrowing, grating lobes, etc.  
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f 1= 300 MHz, d1 = λ1/2 
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f 2= 650 MHz, d1 = λ1/2 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

 
f 3= 1000 MHz, d1 = λ1/2 

DTSC-UC3M Page 21 06/02/2007 



Issues on Array Antennas   
 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

 
f 1= 300 MHz, d2 = λ2/2 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

 
f 2= 650 MHz, d2 = λ2/2 

DTSC-UC3M Page 22 06/02/2007 



Issues on Array Antennas   
 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

 
f 3= 1000 MHz, d2 = λ2/2 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

f 1= 300 MHz, d3 = λ3/2 

DTSC-UC3M Page 23 06/02/2007 



Issues on Array Antennas   
 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

f 1= 650 MHz, d3 = λ3/2 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Array Factor Polar plot

Theta

|F
|

f 1= 1000 MHz, d3 = λ3/2 

Fig. 5.2: UWB Performance
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6. Future Lines 
 
 
 
The future lines of work will cover the following aspects. Some of the tasks are already 
being performed but the results are still not remarkable: 
 
 

• Use of Genetic Algorithms to find an optimum space interleaving, element 
shape and array configuration in terms of ARC. So far the results point to the 
use of a uniform interleaving. 

 
• Study of the array polarization and phasing together: How does the element 

type, spacing and array configuration affect. 
 
• First simulations of real elements (mainly wide band printed dipoles) in finite 

arrays. So far the results show a high computational cost for the whole finite 
array. 

 
• Array configuration: triangular, circular, square, etc. 
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7. Conclusions 
 
 

 
This report summarizes a close study about the important parameters of finite and 
infinite phased antenna arrays: meaning of the parameters, effects, causes, 
computation…. Once we know the cause-effect relations and how to compute them, this 
knowledge will allow us to properly design the radiating elements, so as the array 
configuration: elements distribution, spacing, etc. in order to get the desired 
characteristics for the subset of antennas which will compose the final sub array: 
beamwidth, frequency bandwidth, scan angles, etc. 
 
The text is mainly composed of: 
 

• Review of classical array theory. 
 

• Presentation of the key parameter: Active Reflection Coefficient and its relation 
to the array pattern. Mutual Coupling. Which parameters need to be considered. 

 
• Study of the size of the array: Edge Effect. 

 
• Some more issues: Simulations and other considerations. 
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Introduction 

 
In order to obtain the full performance of a finite phased-array antenna, due to the 
presence of edge and inner elements [1], a high computational cost full wave 
simulation of the whole array is necessary. In the case of an array where 

nmmn SS ≠  (an active array for instance), the coupling characteristics of any 
element must be computed by means of feeding every element in the simulation 
and sometimes this cost may be unaffordable. In the following text we develop an 
approximated method to get the Active Reflection Coefficient (ARC) [2, 3] of an 
edge element using the ARC of an element embedded in an infinite array, which 
implies a reduction in the computational load of the calculation.  
 

The Edge Effect Approximation 
 
The approximate method we propose to calculate the ARC of an edge element [1] 
in a linear array, if we know the behaviour of the linear infinite array composed of 
the same type of antennas is summarized in this section.  
 
In the array of Fig.1 we can compute the ARC for the inner element M according 
to [2] as:  
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[Eq. 1] 
 
 
 
 

Fig. 1: N elements linear array (array 1)  
 

Where )sin(θkdu =  is the phase shift between adjacent antennas for scanning in 
direction θ  and k is the wave number. 
 

1 2 … M … N N-1M-1



The objective is to calculate the ARC of an edge element of the array 2 in Fig. 2 
(element K’, with K’<N). Our first assumption is that the S parameters ','' KKS , 

1','' −KKS ,... '1,''KS  of array 2 are quite the same to the S parameters SM,M, SM,M-

1,...SM,M-(N-K’) of array 1. These scattering parameters belong to equivalent 
antennas placed at the same distance to the reference antenna (antenna where the 
ARC is calculated). 
 
 
 
 

Fig. 2: K’ elements array (array 2)  
 
We can therefore exchange the terms inside the boxes: 
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[Eq. 2]  
 
The new terms S’ are the ARC of edge element K’ from array 2, therefore: 
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This equation tell us how to calculate the ARC of any element by means of using 
the ARC of an equivalent element in an array with less individuals and the S 
parameters missing at its left and right side. We can write the above equation in a 
compact form, where the excess of antennas between array 1 and 2 is equally 
distributed between the right and the left part of array 2 (N-K’ must be an even 
number) for the current formulation: 
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[Eq. 4] 

 
Furthermore if the smaller array is big enough [1], we can apply the 
approximation of discarding the contribution from those elements in the opposite 
side of the array respect to the edge element of interest. Finally, if ∞→N , 

)(θMΓ  becomes )(θ∞Γ , the ARC of any element in the infinite array. As more 
terms we compute in the last sum of Eq. 5 (more ports and antennas need to be 
added to the array at the closer side of the reference antenna and excited in a full 
wave simulation), a better result may be achieved, implying a trade off between 
accuracy and computational cost. The ARC of an edge element of a half-infinite 
array (or equivalently a very big array) may be computed as: 
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The same procedure may be followed for a 2D array. The performance of the  
method is demonstrated in the next section. 
 

Results 
 

In Fig. 3, a 16 half wavelength x-axis-oriented thin dipoles array at 9.5 GHz, 
placed along y-axis and spaced 4λ  is used to show the right performance of the 
method. The absolute error of the ARC absolute value approximation for the outer 
element is calculated for scanning angles from 0 to 80 degrees in θ  direction. The 
curve decays with an increasing number of terms computed in Eq. 5. The residual 
error of the method must be added to the following result, which in this case is 2 
dB. This residual error decreases when the assumptions taken in the method are 
properly fulfilled, for instance in the case of big arrays [1]. The convergence of 
the method occurs for 5 terms computed in the approximation. Therefore we save 
the cost of computing 11 scattering parameters. 
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Fig. 3: Edge Effect Approximation Error for a 16 dipoles array 

 
An 11 printed half wavelength fat dipoles array at 3 GHz, built over a FR4 1.55 
mm thick substrate, with spacing 24 mm ( 4λ≈ ) was measured showing the 
results of Fig. 4. In this case, as the array is only approximately λ75.2  long [1], 
the suppression of the scattering terms belonging to the antennas at the opposite 
side of the array has more influence in the final accuracy of the method.  
 
All simulations were made with CST [4]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Edge Effect Approximation for 11 Printed Dipoles Array 
 

Conclusions 
 

The edge effect computation method is a three steps approximation: S parameters 
equivalence between an array and an equivalent bigger array, suppression of 
irrelevant terms in the calculation of the edge element ARC, and finally the 
calculation of the necessary number of antennas that must be added to the original 
array (only these antennas must be excited in the simulation as they provide the S 
parameters needed in Eq. 5) for the convergence of the method. A good 
convergence for only 5 S parameters was shown in a 16 dipoles array spaced 

4λ , which means a save of 70% of the computational cost respect to a full wave 
simulation of the whole finite array. A fair 5 terms approximation was found in an 
11 fat dipoles array spaced 4λ . The residual error due to the suppression of the 
scattering parameters from the elements in the opposite side of the array will 
decrease rapidly as bigger is the array. The computation cost will also decrease 
with a low error as bigger is the spacing between elements.  
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