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Abstract

All-sky cameras imagery is employed in Satellite Laser Ranging (SLR) stations during
operations to gather information about the observing conditions, typically as an sky
awareness tool for operators. Due to the emission of laser light towards the sky in the
SLR technique, it is a priority to ensure aerial safety prior to and during operations.
For this purpose, a range of techniques are employed, such as active radars, cameras,
airplane spotters operating kill-switches, and Automatic Dependent Surveillance-
Broadcast (ADS-B) receivers. Thanks to the aviation regulatory environment in many
parts of the world, which mandates the equipment of ADS-B for a broad set of aircraft,
these devices are nowadays very popular in SLR stations. ADS-B is a cooperative
surveillance technology wherein an aircraft determines its position through satellite
navigation and transmits it periodically, enabling its precise tracking. Currently, the
primary limitation with this technology is that not all aircraft are required to equip
it, which calls for alternative detection systems. In this work we demonstrate the
automatic detection of aircraft using neural networks to analyse nighttime images
from an all-sky camera, and propose that such a system can provide complementary
information to that obtained with ADS-B, therefore increasing the safety of the
operations.
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1 Introduction

Aerial safety stands as a pivotal concern in Satellite Laser Ranging.

Accurate aircraft detection within the operational zone is paramount

and ensures the required safety for these systems. Presently, the

ADS-B (Automatic Dependent Surveillance-Broadcast) technology

is employed as one of the primary methods for detecting aircraft in

proximity to the operational zone.

The method proposed in this study aims to streamline the aircraft

detection task by utilizing convolutional neural networks and binary

semantic segmentation to analyze nocturnal images acquired through

a wide-field-of-view camera. These tools will yield predictions for

each given image, assigning a probability to each pixel of belonging

to an aircraft trace. These techniques have been employed in similar

approaches such as the detection of ship traces from satellite images,

and have demonstrated their effectiveness compared to other methods

such as using the Hough transform to detect lines in an image.

1.1 Automatic Dependent Surveillance-Broadcast

An ADS-B transponder, a radiofrequency device installed aboard

aircraft, facilitates real-time knowledge of their position and heading.

Some of the transmitted data include aircraft identification, altitude,

elevation, and azimuth.

While traditional airborne radar tracks aircraft by reflecting transmitted

radar waves, ADS-B actively broadcasts aircraft position data. In this

process, participants independently determine their positions using

navigation satellites and broadcast this information in L-band (1090

MHz).

This standard system is relatively young and has only been in existence

since 2005. In Europe, ADS-B has been mandatory for large aircraft

with a takeoff weight equal to or greater than 5.7 metric tons or a true

airspeed greater than 250 KTAS (knots true airspeed) during flight,

starting the 7th of December, 2020.

The primary issue this technology faces in the contextofSLR operations

is that not all aircraft are mandated to carry an ADS-B transponder

on board. Typically, smaller aircraft such as gliders, ultralights, and

certain military aircraft might be exempt from carrying an ADS-B

transponder under specific circumstances. Regulations can vary based

on the country and relevant civil aviation authority. Hence, the

utilization of additional and complementary detection techniques is

advisable to broaden the spectrum of detected aircraft. Thus, active

radars have been in use in many SLR stations as the primary aircraft

detection system. However, this technique can not be employed
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in observatories that operate Very Large Baseline Interferometry

(VLBI) for either geodesy or radioastronomy, due to radiofrequency

interference. ADS-B data will be utilized in this study as the ground

truth for aircraft positions, enabling comparisons with the examined

detection system.

1.2 All-sky Camera

A whole sky camera is a specialized device used in meteorology

and astronomy among other fields to capture an image of the entire

sky. An example of an application is hemispherical photography,

used to study plant canopy geometry and calculate near-surface solar

radiation. At the Yebes Observatory, the all-sky camera is employed

in SLR observations to obtain information about the atmospheric

conditions, as a visual aid for system operators [1].

The images acquired by this camera will be employed in this study to

train the network and conduct detections. Figure 1: Characteristics of the sensor
mounted in the all-sky camera.

Figure 2: ZWO ASI294MC Pro.

Figure 3: All-sky camera in Yebes obser-
vatory

Camera Information:

• Camera: OMEA-8C (Alcor System) [2]

• Internal: ZWO ASI294MC Pro

– Back-illuminated CMOS, high QE

– Large quantum well (for long exposures)

– Cooled sensor (-35°C DeltaC)

– Low noise and good sensitivity

– Sky images at 2800x2800 (color)

• Automatic aperture

• Temperature and relative humidity sensors

• Anti-condensation system

1.3 AI, Machine Learning and Deep Learning

Artificial intelligence, commonly abbreviated as AI, entails the pursuit

of endowing computers with capabilities that mimic human cognitive

functions. These functions include tasks like reasoning, problem-

solving, perception, language understanding, and learning from

experiences. AI aims to create systems that can perform tasks that,

when executed by humans, typically require human intelligence. It

encompasses a spectrum of techniques and approaches, one of which

is machine learning.

Machine learning is a subset of AI that revolves around the concept

of enabling computers to improve their performance on a specific

task by learning from data rather than being explicitly programmed.
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In traditional programming, a human programmer writes explicit

instructions for a computer to execute. In contrast, machine learning

algorithms adjust their internal parameters based on data examples,

enabling them to make predictions or decisions without explicit

programming for each scenario.

Deep learning represents a branch of machine learning characterized

by the utilization of artificial neural networks. These networks are

inspired by the interconnected structure of neurons in the human

brain and consist of layers of interconnected nodes. Deep learning

methods employ neural networks with numerous layers, hence the

term "deep." These deep architectures enable the automatic extraction

of hierarchical features from input data, allowing the system to discern

intricate patterns that might be imperceptible through traditional

approaches.

In essence, deep learning refines the concept of machine learning by

employing complex neural networks capable of learning and represent-

ing data in progressively abstract ways. This ability to automatically

uncover relevant features and representations has led to groundbreak-

ing advancements in various fields, including image and speech

recognition, natural language processing, autonomous vehicles and

scientific research.

1.4 Classification, Object Detection, Semantic Segmentation
and Instance Segmentation

In the realm of deep learning and computer vision, classification,

object detection, semantic segmentation and instance segmentation

are distinct tasks that deal with understanding and analyzing visual

data in varying degrees of complexity.

Classification is one of the foundational tasks in machine learning and

computer vision. It involves assigning a label or a category to an input

image or object. In the context of images, this means determining what

object or scene the image represents. For instance, given an image of

a cat, a classification model would predict that the image contains a

"cat."

Object detection takes classification a step further by not only identify-

ing objects in an image but also localizing their positions. In object

detection, the goal is to detect and locate multiple objects within an

image, while also classifying them into different categories. Object

detection algorithms output bounding boxes around the detected

objects, along with their corresponding class labels.

Semantic segmentation is a more intricate task that involves pixel-

level labeling of an image, where each pixel is assigned a class label.
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Unlike object detection, which focuses on bounding boxes, semantic

segmentation provides a detailed understanding of the spatial extent

of different objects within an image. In other words, it divides the

image into meaningful segments and assigns a label to each segment,

effectively creating a pixel-wise map of object categories.

Instance segmentation combines elements of both object detection

and semantic segmentation. This task goes beyond simply identifying

object categories and their locations; it aims to provide a pixel-level un-

derstanding of objects within an image while distinguishing between

individual instances of the same object class.

Figure 4: Differences between classification, object detection, semantic

segmentation, and instance segmentation [3]

For this study, a model based on binary semantic segmentation will

be trained. In this manner, a pixel-level class map will be obtained

indicating the locations of aircraft traces.

2 Datasets

Given that the all-sky camera stores images in FITS format, establishing

the conversion parameters from FITS to PNG is necessary, as PNG is

a widely used image format compatible with most image processing

libraries and deep learning frameworks, in order to create different

datasets. An astrometric calibration has been necessary to establish the

relationship between positions in the image and celestial coordinates

[4]. In total, no more than 2000 images have been employed for the

training and testing of the network. The ADS-B data used was collected

between the 10th of May, 2021, and the 14th of August, 2021. Certain

adjustments have been made to the data, including the conversion of
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CEST to UT format for the time values.

The preprocessing of images for their treatment in training and pro-

cessing with neural networks is an important step for their success.

Typically, images undergo certain preprocessing steps such as normal-

ization, thresholding, removal or combination of different channels,

smoothing, resizing, etc. In this study, two preprocessing meth-

ods have been experimented with, providing two different ways of

visualizing the images. The first one follows the observatory’s conven-

tional approach, enabling images to be viewed naturally, resembling

photographs.

Figure 5: Images from the all-sky Camera

Figure 6: Classical (above) and enhanced
(below) conversion methods

For the second visualization method, a more intricate procedure has

been undertaken. In the conversion from FITS to PNG one has take care

of dealing with artifacts that may impact negatively the performance

of the neural network, such as hot pixels, and the dynamic range of

the pixel values is reduced to 8-bit per channel. A suitable pixel value

scaling has to be employed, so that the relevant details of the image are

suitably preserved. Here we have used a square root stretching with

minimum and maximum threshold values determined empirically

for our data set. For the second data set, prepared to enhance the

signal to noise ratio of aircraft traces, and combat the effect of light

pollution close to the horizon, we subtract the background from the

image prior to its conversion to PNG. This was accomplished with the

background estimation found in the software SExtractor [5]. Briefly,

this consists in the creation of a background map interpolated from the

local background in each mesh of a regular grid in the image, which

are computed iteratively around the median pixel values. Details are

found in the online documentation of SExtractor. With the background

subtracted, the images are seemingly less affected by light pollution,

and faint aircraft traces appear more prominent.

2.1 Data

The data utilized for this project comes in two forms:

• Nighttime all-sky imagery (FITS files) [6]

• ADS-B data for the same period (stored in Feather format after

pre-processing)

For the training process, nocturnal images captured from the 28th of

June, 2021, to the 30th of June, 2021, have been employed. Subsequently,

for network testing, nocturnal images taken from the 01st of July, 2021,

to the 21st of July, 2021, were utilized.
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2.2 Training Dataset

Figure 7: Example 1 of training image and
mask

Figure 8: Example 2 of training image and
mask

For this project, only 10-second exposure images have been utilized,

and a training data set has been constructed, consisting of 520 images

along with their respective masks, using the "classical view" conversion

method. To generate these images, a selection of frames displaying

aircraft traces was made, and segments of these frames were extracted.

VGG Image Annotator [7] tool was employed to generate binary masks

for the images, assigning a value of 1 to aircraft pixels and 0 to the rest.

Using these images and their corresponding masks, the training

dataset for the neural network is constructed. The ResNet50 network,

a Residual Network with 50 layers, has emerged as one of the leading

networks for semantic segmentation [8]. This work utilizes the network

as the back-bone architecture to process the sky images. For the

implementation of the network, the TensorFlow [9] and Keras libraries

in Python were utilized.

One of the key steps to ensure good convergence and learning of the

model is the selection of the network’s hyperparameters. Learning rate

is a hyperparameter that controls the magnitude of weight updates

during the training process, influencing the convergence and learning

speed of the model. Batch size represents the number of training

examples used in each iteration of the optimization algorithm.

After conducting the necessary experiments, it has been determined

that the optimal combination of hyperparameters consists of a learning

rate of 10
−4, a batch size of 16 with 50 epochs.

Another crucial parameter for the network is the optimizer, used to

update the network’s weights based on the computed gradients during

backpropagation. The Adam optimizer [10] adapts the learning rate

based on the distribution of parameters within the model.

Additionally, it is important to establish an appropriate loss function.

The Jaccard loss function is a measure of dissimilarity between two

sets of objects.

Lastly, during the training, the Intersection over Union (IoU) metric is

calculated. IoU metric is a measure of similarity between two sets of

pixels in an image. In the context of semantic segmentation networks,

IoU is used to evaluate the quality of the segmentation.

2.3 Validation Dataset

The training data set is split into a training set and a test set using a

75-25 ratio. This aids in verifying the network’s effective convergence

across different combinations of hyperparameters.
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2.4 Test Dataset

Two training data sets have been constructed by selecting 750 random

images taken between the 15th and 17th of July. One of the data sets

was curated using "classical view", while the other utilized "enhanced

view", enabling a comparative analysis of their outcomes.

From this data sets, metrics have been extracted by comparing pre-

dicted detections from the network with ADS-B data, including the

comparison of the successful trace detection percentage corresponding

to aircraft registered by ADS-B versus false positives.

These false positives can have different natures: they can be genuine

false positives, i.e., detections made by the network where there is no

actual trace, and predicted detections by the network where there is a

trace that is not registered in ADS-B data.

2.5 Data augmentation

To enhance the network’s performance, data augmentation [11] has

been utilized. This process generates additional images during the

training process by applying various transformations to the images

within our data set, such as zooms, shears, flips, and shifts. This

approach generates a new image for each training step. As our

training data set consists of 520 images, and a batch size of 16 has

been selected, each training epoch comprises 33 training steps. As we

train the model for 50 epochs, the overall number of images generated

due to data augmentation amounts to 1650. As a result, we effectively

quadruple the size of our training data set.
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Figure 9: Output images showing ADS-B traces (red) and net detections

(green)

13



Detection of aircraft traces in nighttime all-sky camera images using deep learning IT-CDT 2023-08

Figure 10: Training and Validation IoU comparison across different

combinations of hyperparameters.

3 Methods

Once the chosen and trained neural network model is ready, a code

can be constructed to enable the processing of new images. The code

used in this research is an adaptation of the one published in [12].

Some adjustments have been made to this code, such as changing

the BACKBONE from ResNet34 to ResNet50, and transitioning from

working with TIF files to working with PNG files. At this juncture,

the test data set will be employed to extract performance metrics for

the model. The proposed code acquires images with dimensions of

2822 × 2744 pixels from the camera, removes black borders to achieve

images of 2560 × 2560 pixels, and then segments each image into

patches of 256 × 256 pixels, which is the expected input size for the

network. Subsequently, each of these patches is processed by the

network, resulting in a predicted mask. Once the 100 masks for an

image are obtained, they are reassembled to generate the complete

mask of the processed image. From this mask, contours are extracted

for predicted traces that surpass a certain area threshold. These

contours are then drawn onto the original image, enhancing clarity.
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Similarly, by accessing the ADS-B data for the time period covered

by the image, aircraft trajectories from that data are drawn on the

image. After this process, nighttime sky images are obtained with

ADS-B traces marked in one color and traces predicted by the network

marked in another, as depicted in Figure 9.

Using these new images, deriving metrics such as the percentage of

ADS-B traces detected by the network

% of ADS-B traces detected =

ADS-B traces ∩ Predicted traces

ADS-B traces
(1)

and the percentage of false positives becomes straightforward.

% of false positives (based on ADS-B data) =
Erroneous detections

Total detections
(2)

Where erroneous detections encompass both network predictions in

areas where there is no trace as well as network predictions where

there is a trace, but it is not indicated by the ADS-B data.

4 Processing time

A key topic for the feasibility of an implementation of a detection

system based on deep learning is the processing time required for

the analysis. Although our efforts have focused on the question of

detectability, we report here some timing tests, which are limited by

our access to GPU units.

We have worked with images taken with a 10-second exposure time.

This decision was made based on the availability of the acquired

images. Further tests will be necessary to determine the minimum

required exposure time for successful aircraft detection.

Table 1: Models used and their corresponding processing times.

Model Type Processing time (s)

Intel Xeon CPU @ 2.3 GHz (Colab) CPU 25

Intel Core i5-8500 CPU @ 3 GHz CPU 16.5

AMD Ryzen 5 7600X @ 4.7 GHz CPU 10

Using GPU is crucial for achieving real-time implementation of the

model. It’s important to note that the processing time must be added

to the 10-second exposure time of the image and the time it takes for

the PC to receive the image from the camera. For this reason, it’s

essential to minimize the processing time of the network as much as

possible if a real-time and reliable system is desired.
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5 Results

After processing the 750 images twice (one for each visualization

option), the network yields the following outcomes.

5.1 "Original view" data set

The results obtained using the "Original view" data set (Figure 11)

exhibit an aircraft detection rate of 69% for those marked by ADS-

B. Out of the total neural network detections, these ADS-B trace

detections constitute 29.1%.

Figure 11: ADS-B detection rate (left) and TP-FP rate (right) with the

"original view" test data set
Figure 12: Plane detection based on eleva-
tion (Original view)

Figure 13: Other traces detected by the net

Another interesting metric that can be obtained by manually processing

a smaller set of images (100 out of 750) is the percentage of detections

made by the network that are not ADS-B traces but are visible traces

of some kind. This set of traces may include aircraft without ADS-B

transponders and satellites.

As observed in Figure 13, out of the total network detections, 35.2%

correspond to ADS-B aircraft detections. 48.4% of the detections

correspond to traces not identified by ADS-B, which could be air-

craft without onboard ADS-B transponders or satellites. Lastly, only

16.5% of the detections are false positives. We note that many false

positives found in these data set were found in images where the

Moon was present, creating spurious reflections. This circumstance

is not problematic as it can be easily filtered. In a similar way, other

situation where fleeting false positives can be found are the presence

of a particularly bright planet in the images.

In Figure 14, we can observe that the network’s main challenge

lies in low-elevation aircraft. This is attributed to the level of light

pollution present along the horizon in the all-sky camera images.

Also, the maximum distance for an aircraft at the zenith is its altitude,

approximately up to 12 km. However, in the case of an aircraft at low

elevation, the distance between the aircraft and the camera increases.

Above 20 degrees of elevation, the system has been capable of detecting

94% of the aircraft whose positions are known through ADS-B.
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Figure 14: Plane detection based on elevation

5.2 "Enhanced view" data set

When processing the images using the "Enhanced view," we observe

similar results. 72.1% of the ADS-B aircraft are detected. Out of

the total neural network detections, these ADS-B trace detections

constitute 6.6%. As evident in this case, with the "Enhanced view,"

the detection of ADS-B traces improves slightly, while the number of

false positives increases significantly.

Figure 15: ADS-B detection rate (left) and TP-FP rate (right) with the

"enhanced view" test dataset
Figure 16: Plane detection based on eleva-
tion (Enhanced view)

Figure 17: Other traces detected by the net

The increase in the number of false positives using the "enhanced

view" data set may be attributed to several factors. Firstly, the training

data set still consists of images with the "original view," which could

potentially confuse the neural network. Ideally, for this case, it would

be optimal to construct a sufficiently large and diverse data set with

enhanced images. Another reason for this increase could be that

when enhancing the aircraft traces, certain image features such as

edges or sets of aligned stars are also enhanced, which may create the

impression of being a trace.

If we now take another look at the elevations of ADS-B aircraft, we

can observe that the results are practically identical to those obtained
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with the "Original view." The main issue with the network still lies

in detecting aircraft at low elevations. In this case, starting from 20

degrees of elevation, the network is capable of detecting 94.7% of the

aircraft. Examining the low-elevation detections (<20°) and comparing

them to the previous results, we can observe an improvement. 42.4%

of the low-elevation ADS-B traces are detected, compared to 36.8% in

the previous case (using the "original view" data set).

As observed in Figure 17, out of the total network detections, 7.7%

correspond to ADS-B aircraft detections. 13.7% of the detections

correspond to traces not identified by ADS-B, which could be aircraft

without onboard ADS-B transponders or satellites. Lastly, 78.7% of

the detections are false positives.

As mentioned before, in this new image representation, a higher

percentage of ADS-B trace detections is achieved. On the other hand,

the percentage of false positives increases significantly as a trade-off.

Figure 18: Plane detection based on elevation

Figure 18 illustrates how the distribution of ADS-B aircraft detection

concerning elevation follows a similar pattern to the previous case.

The network encounters challenges in identifying all traces below 20°.

Between 20° and 30°, there are some detection losses, but in this range,

the vast majority are detected. Above 30°, 100% of the ADS-B traces

are detected.

6 Conclusions and future work

The presented work demonstrates the potential for enhancing aircraft

detection using neural networks. This system would enable the identi-

fication of aircraft that currently lack an onboard ADS-B transponder.

Given a system with sufficient GPU capabilities, real-time implement-

ation would be feasible. The primary challenge of the network is the
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detection of aircraft at elevations lower than 20 degrees due to the high

levels of light pollution present at the horizon. Future work in the same

direction could involve exploring a multi-class semantic segmentation

network, allowing for the detection of not only aircraft traces but also

clouds, satellites, meteors, and more. Additionally, the creation of a

more comprehensive training data set, incorporating a greater number

of images and more precisely generated masks, has the potential to

enhance the model’s performance. Finally, for the implementation, a

user interface could be developed to consolidate both ADS-B data and

network predictions into a single platform, streamlining the workflow

for technicians and operators.
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