Direct Measurement of Self-Heating Effect on Chip Resistors Used for Cryogenic Amplifiers Bias Networks

I. López-Fernández, J.D. Gallego, C. Diez González, R. I. Amils, I. Malo

IT-CDT 2021-7

Observatorio de Yebes Apdo. 148 19080 Guadalajara SPAIN

Date: 2021-05-18

Revision: A

CHANGE RECORD

Revision	Date	Affected Paragraphs(s)	Reason/Initiation/Remarks
А	2021-05-12	All	First Issue

TABLE OF CONTENTS

Abs	tract4					
1	Introduction5					
2	Test Fixture, LNA and Test Equipment6					
3	Measurements					
4	Results9					
5	Theoretical Estimation of the Temperature Rise11					
6	Scaling the Results					
7	Conclusions15					
Refe	erences16					
Арр	Appendix I: Datasheets17					
Арр	Appendix II: Examples of Mathcad Files Used					

ABSTRACT

Modern low noise amplifiers for radio astronomy are specified with increasingly wider bandwidth, which in the case of IF amplifiers can extend from L to K band. On the one hand, this has driven the use of resistors in the bias networks with lower parasitics, which can handle very low power. On the other hand, drain currents have grown to properly bias larger transistors. To assess whether the self-heating of critical resistors can contribute significantly to the LNA noise temperature, two 50 ohm resistors in different sizes and substrates (alumina and fused quartz) have been mounted on a test fixture and used as a matched load at the input of an LNA. The power detected at the output of the LNA varying the current flow through the resistor allows a good estimation of the resistor temperature. Plots of power density versus temperature are presented. The results are in agreement with theoretical calculations. Alumina resistors hardly pose any problem in a typical amplifier despite its size, but the temperature increase in fused quartz resistors due to its low cryogenic thermal conductivity might recommend to avoid them in some cases.

1 INTRODUCTION

Cryogenic hybrid Low Noise Amplifiers use lumped chip resistors as part of the DC bias networks. Some of the resistors also perform gain stabilization or equalization functions and the thermal noise generated inside them contributes to the overall amplifier noise. In principle this noise only depends on their physical temperature. However, since in most cases some power is dissipated in them due to the bias current, the question arises whether the dissipated power can cause a significant increase in physical temperature contributing to the noise temperature of the amplifiers.

The need to increase the bandwidth of amplifiers and their central frequency has led to the search for components with lower parasitics. This has driven the use of smaller and smaller resistors and even to change their support material from alumina to fused quartz (with lower dielectric constant). Both contribute to increase the thermal resistance and thus aggravate the self-heating problem.

Moreover, these ultra-wide bands start at relatively low frequencies, requiring wide gate transistors in the amplifiers in order to achieve an acceptable noise and power matching. The optimal bias current driving these devices scales with the gate size, so the power dissipated in the drain resistors of the bias networks is comparatively higher. Figure 1 illustrates the estimated impact in noise performance on a wide band amplifier due to an increase of 50 K in the temperature of the 100 ohm drain resistor.

This work reports the results obtained from the measurement of the noise generated in two very small size chip resistors, of alumina and fused quartz, cooled to cryogenic temperature, as a function of the power dissipated.

Figure 1: Noise increase in an ultra-wide-band (4-20 GHz) amplifier (Y420G1) assuming that the 100 ohm drain resistor is 50 K hotter than the ambient 12 K temperature.

2 TEST FIXTURE, LNA AND TEST EQUIPMENT

To perform the measurements, a small box was used to house a 50 Ohm microstrip line, a conical coil for polarization, a decoupling capacitor and the 50 Ohm chip resistor to be characterized¹. Accurate noise measurements require a good match of the input termination. With this type of construction this is achieved in a limited frequency range.

Figure 2 and Figure 3 show the test fixture with the 50 ohm resistors used (datasheets in Appendix I):

- Compex MN1-20-20X10X10-A-50R00-J-VB: Quartz resistor, 20×10×10 mil.
- State of the Art S 0202 AA 500 JKW: Alumina resistor, 20×20×10 mil.

Figure 4 shows the input reflection of the test fixtures measured at room temperature. The best results are obtained around 700-1000 MHz. It was decided to perform the measurements at 700 MHz.

Note that to achieve better matching, short bond wires were used at both resistor pads. This might not be representative of a standard arrangement of an LNA drain resistor, which typically uses longer wires connected to lines or chips and not directly to the base plate, leading to a less efficient heat power drain.

The resistors were glued to the gold-plated aluminum base with conductive epoxy Epotek H-20. Thermal conductivity of this epoxy at cryogenic temperature is low [2]; the thickness of the layer of epoxy must be considered when estimating the thermal resistance of the path to the base plate. In the particular arrangement of this setup² the thickness of the epoxy layer is around 25 μ m instead of the usual 10 μ m.

Figure 2: Compex quartz resistor test fixture (left) and detail of the resistor bondings (right).

¹ The box and 50 ohm lines used were originally produced for wide band LNAs (series Y214G).

² The resistors were mounted partly on top of the base metallization of the substrate, which was exposed because it had to be manually cut to adapt it to this particular setup.

Figure 3: SOTA alumina resistor test fixture (left) and detail of the resistor bondings (right).

Figure 4: Room temperature input reflection of the two 50 ohm resistors tested, mounted in the module. On the left, the quartz chip from Compex, size 0102. On the right, the alumina chip from SOTA, size 0202. Markers are placed at 700 MHz.

The accurate measurement of the low noise generated in the input termination requires a low noise cryogenic amplifier with good gain stability and low input reflection in this frequency range. It was decided to use a SiGe unit (YSG 2001) which was available at the time of the measurement with good performance at low frequency.

The noise measurements were performed with a PNA-X N5247A Vector network analyzer [3] (10 MHz-67 GHz) with option 029 (Source-Corrected Noise Figure Measurements) (Keysight). The receiver noise temperature was measured with a noise source HP 346C.

3 MEASUREMENTS

The measurements were obtained by cooling the amplifier to either 7 K or 15 K. The temperature was stabilized by a PID loop with the sensor attached to the amplifier. The test fixture with the resistor was directly connected to the input of the amplifier although different thermal straps were used for connecting each component to the refrigerator cold plate. The final temperature of the resistor module was colder than the amplifier: 5.5 K and 13.9 K respectively. A photograph of the measurement setup is shown on Figure 5.

Figure 5: Module with the load connected to the LNA for cryogenic measurements in the SUMI-1 cryostat.

The noise temperature and gain of the cryogenic amplifier was accurately known by previous measurements at the working temperatures obtained by the heated load method. The goal is to determine the temperature of the input termination (chip resistor tested) by the excess noise measured when bias is applied. The temperature of the "hot" resistor can be calculated as:

$$T_h = \left(T_c + T_{sys}\right) \frac{P_h}{P_c} - T_{sys}$$

Where:

- *P_h* is the total output noise power measured (in linear units) with bias applied.
- P_c is the total output noise power measured (in linear units) without bias applied.
- T_c is the physical temperature of the resistor with no bias (measured by a sensor in the fixture).
- T_{SYS} is the noise temperature of the amplifier and the receiver cascaded.

The system noise temperature can be obtained as:

$$T_{sys} = T_{LNA} + \frac{T_{RX}}{G_{LNA}}$$

Where:

- *T_{LNA}* is the noise temperature of the amplifier.
- T_{RX} is the noise temperature of the receiver (PNA-X).
- *G*_{LNA} is the gain of the amplifier (in linear units).

Note that the measurement obtained depends on the relation between the values of total output noise powers as in Y-factor measurements.

4 **RESULTS**

Figure 6: Measured temperature of the 50 ohm resistor as a function of the dissipated power. On the top row, SOTA Alumina resistor, size 0202 and on the bottom row, COMPEX Quartz resistor, size 0102. On the left, fixing the LNA temperature to 7 K (unbiased resistor @5.5 K). On the right, fixing the LNA temperature to 15 K (unbiased resistor @13.9 K).

-		
Power (mW)	Т _һ (К)	Т _h (К)
0	5.482	13.79
0.05	6.754	14.693
0.2	10.029	17.104
1.25	25.374	29.587
2.45	36.286	38.593
5	50.097	53.186
11.25	76.166	76.805
20	101.045	101.532

Compex 0102 Quartz resistor

Power (mW)	Т _h (К)	Т _һ (К)
0	5.59	13.95
0.05	5.967	14.044
0.2	6.757	14.186
1.25	9.89	15.306
2.45	11.859	16.434
5	14.68	18.409
11.25	19.073	22.02
20	23.173	25.71
31.25	27.175	29.464
45	31.211	33.38
61.25	35.169	37.32
80	39.236	41.209

SOTA 0202 Alumina resistor

5 THEORETICAL ESTIMATION OF THE TEMPERATURE RISE

Knowing the thermal conductivity k(T) we can estimate the temperature rise in the resistor due to the power dissipated according to the Fourier law for the heat flux $\overrightarrow{\Phi_a}$:

$$\overrightarrow{\Phi_q} = -k(T) \cdot \nabla T$$

Assuming a uniform heat distribution and a unidimensional heat flux, and neglecting the radiated power, the previous expression in integral form is:

$$P = \frac{S}{h} \cdot \int_{T_1}^{T_2} k(T) \, dT$$

Where:

- *P* is the power transmitted from 2 to 1 (in our case, the top and bottom of the resistor)
- T_1 and T_2 are the temperatures of 1 and 2 respectively (top and bottom of the resistor)
- *S* is the surface across which the power is transmitted (the resistor surface)
- *h* is the distance between 1 and 2 normal to *S* (height of the resistor and epoxy)
- k(T) is the thermal conductivity of the path (resistor and epoxy)

The last equation is thus solved for T_2 assuming that P is the power dissipated in the resistor.

Cryogenic data for alumina and quartz thermal conductivity can be obtained from [1], see Figure 7.

The contribution of the thermal resistance of the epoxy has been taken into account, as it is significant especially in the case of the alumina resistor, with higher thermal conductivity. Cryogenic data for Epotek H-20 thermal conductivity was obtained from [2], see Figure 8.

The power drain through the bond wires has been neglected.

Figure 7: Thermal conductivity of alumina and fused quartz. For alumina we use the data from Nemoto (1985). The curve for fused quartz is from Touloukian (1970).

Figure 8: Thermal conductivity of Epotek H-20 epoxy according to Amils (2017).

Figure 9: Estimated temperature of the resistor as a function of the dissipated power. Curves for quartz and alumina at 5.5 K and 14 K using the **estimated epoxy thickness** of the samples (25 μ m). In red, the temperature of the resistor thin film. In blue, the temperature of the base of the resistor (top of the epoxy). In black, the temperature of the base plate.

Figure 10: Estimated temperature of the resistor as a function of the dissipated power. Curves for quartz and alumina at 5.5 K and 14 K using the **typical epoxy thickness** (10 μ m). In red, the temperature of the resistor thin film. In blue, the temperature of the base of the resistor (top of the epoxy). In black, the temperature of the base plate.

6 SCALING THE RESULTS

The results can be scaled with the surface of the resistor to extrapolate to other sizes.

Figure 11: Measured temperature of the alumina (blue) and quartz (red) resistor as a function of the dissipated power density. On the left for a base temperature of 5.5 K. On the right for 13.9 K.

Remember that the epoxy thickness in this test fixture was around 25 μ m. The estimations for a standard thickness of epoxy of 10 μ m are shown in the following plots (no bond wires included).

Figure 12: Estimated temperature of a 10 mil thick block of alumina (blue) and quartz (red) glued with 10 μ m of Epotek H-20, as a function of the dissipated power density. On the left for a base temperature of 5.5 K. On the right for 13.9 K.

7 CONCLUSIONS

The power dissipation in the resistors usually employed in cryogenic low noise amplifiers is responsible for a temperature increment that is only significant in terms of noise temperature variation under very specific circumstances. The resistors must be small in size, high in value and support a high current (high power density), but even then, only with low thermal conductivity substrates the heating is important. Alumina resistors can withstand power densities of 80 mW/mm² at 14 K with a temperature rise of less than 6 K (that is about 10 mA on a 100 ohm 0102 resistor). On the contrary, the use of fused quartz resistors must be carefully evaluated.

The agreement between the measurements and the simulations is quite good (compare Figure 6 and Figure 9), allowing us to estimate a correction for the excess of epoxy in the samples (as compared with a typical assembly). This was the cause of the extra dissipation noted specially in the alumina resistor. Figure 12 can be used to calculate the temperature rise in the resistor for any given power density.

REFERENCES

- [1] N. J. Simon, "Cryogenic properties of inorganic insulation materials for ITER magnets; A review," National Institute of Standards and Technology, Boulder, NISTIR 5030, Dec. 1994; available at <u>https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir5030.pdf</u>
- [2] Ricardo I. Amils, "Amplificadores criogénicos de bajo ruido para aplicaciones radioastronómicas y espaciales," PhD Thesis Dissertation, Madrid, 2017, available at https://eprints.ucm.es/id/eprint/47612/
- J.D. Gallego, R. Amils, C. Diez González, I. López, I. Malo "Using Keysight PNA-X and NFA Noise Receivers for Noise Temperature Measurements with Cryogenic Variable Temperature Loads," CDT Technical Report 2019-17, available at <u>https://icts-yebes.oan.es/reports/doc/IT-CDT-2019-17.pdf</u>

APPENDIX I: DATASHEETS

 STATE OF THE ART, INC.
 2470 Fox Hill Road, State College, PA 16803-1797

 Phone (814) 355-8004
 Fax (814) 355-2714
 Toll Free 1-800-458-3401

 Where Quality Isn't a Goal...It's Our Tradition

05/21/99

	-							
Tolerance	Code	Tolerance	Code	Tolerance	Code	Tolerance	Code	
± 20%	М	± 5%	J	± 1%	F	±.05%	Q	
± 15%	L	± 3%	н	± .5%	D	±.01%	S	
± 10%	К	± 2%	G	±.1%	В			

www.compexcorp.com

(856) 335-2277 · sales@compexcorp.com

16

	ioie.	Selectio	on Charts	are fo	or guide	ince only	. All Comp	ex parts	are built	t to spec	ific custo	o <mark>mer</mark> requ	uirements	i.
Microwav Ran Case Si	e Re ge k ze (C	sistance Dy Dhms)	e Stan Ca	dard Ran se Si	Resista ge by ze (Ohn	nce ns)		M	Minimur Handl laterial d	n Powe ing by and Size	r **		Pow Hand Cod	/er Iling des
Case Size Mils	Min	Max	Case Size Mils		Max Alumina	Max Silicon	Case Size Mils	Alumina C-35	Silicon C-22	AIN C-28	BeO C-25	Quartz C-20	Watts	
12X9	4	500	12X9	1-3	25K	150K	12X9	50 mW	50 mW	200 mW	400 mW	10 mW	10 mW	А
14X12	4	750	14X12	1-3	40K	200K	14X12	100 mW	100 mW	400 mW	800 mW	20 mW	20 mW	В
20X10	6	1000	20X10	1-3	60K	250K	20X10	100 mW	100 mW	400 mW	800 mW	20 mW	50 mW	С
15X15	4	1000	15X15	1-2	70K	500K	15X15	100 mW	100 mW	400 mW	800 mW	20 mW	75 mW	D
20X20	4	1250	20X20	1-2	125K	750K	20X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	100 mW	E
30X20	4	2500	30X20	1-2	200K	1M	30X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	150 mW	F
40X20	4	3750	40X20	1-2	250K	1.5M	40X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	250 mW	G
30X30	2	2500	30X30	1-2	275K	2M	30X30	250 mW	250 mW	1.0 W	2.0 W	50 mW	500 mW	Н
35X35	2	3000	35X35	1-2	300K	3M	35X35	250 mW	250 mW	1.0 W	2.0 W	50 mW	750 mW	J
40X40	2	3750	40X40	1-2	500K	5M	40X40	350 mW	350 mW	1.4 W	2.8 W	70 mW	1 W	K
50X25	3	5000	50X25	1-2	300K	3M	50X25	350 mW	350 mW	1.4 W	2.8 W	70 mW	2 W	L
60X30	3	5000	60X30	1-2	500K	6M	60X30	500 mW	500 mW	2.0 W	4.0 W	100 mW	3 W	N
50X50	2	5000	50X50	1-2	700K	7M	50X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	4 W	P
60X60	2	5000	60X60	1-2	2M	15M	60X60	500 mW	500 mW	2.0 W	4.0 W	100 mW	5 W	Q
80X50	2	5000	80X50	1-2	2M	20M	80X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	10 W	S
100X50	2	5000	100X50	1-2	2.5M	25M	100X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	15 W	T
120X60	2	5000	120X60	1-2	3M	30M	120X60	750 mW	750 mW	3.0 W	6.0 W	125 mW	20 W	V
100X100	2	5000	100X100	1-2	3.5M	35M	100X100	750 mW	750 mW	3.0 W	6.0 W	125 mW	25 W	W

Bondir	ng Pad Metallizations	Temperature Coeffic of Resistance	cient	
Metallization		Code	Parts Per Million (PPM)	Cod
Pd/Au Top Side	Bare Bottom Side	А	±150	Q
Pd/Au Top Side	Ta/Pd/Au Bottom Side	D	±100	V
Pd/Au Top Side	Ti/Pt/Au Bottom Side	L	±50	W
Ni/Au	Application Specific	Ρ	±25	Х
TiW/Au Top Side	Bare Bottom Side	E	±10	Y
TiW/Au Top Side	Ta/Pd/Au Bottom Side	F	±5	Z
Window	Silicon Only	W		
Custom	Application Specific	Х		

Visual Inspection

DC Resistance

Thermal Shock

Life Test

Mechanical Inspection

Resistance Temperature Characteristic (TCR)

High Temperature Exposure

Resistance to Bonding Exposure

Short Time Overload

Wire Bonding Integrity

MIL-PRF-55342 Para 4.8.1 MIL-STD-883 Method 2032

MIL-PRF-55342 Para 4.8.1

MIL-PRF-55342 Para 4.8.2 MIL-STD-202 Method 303

MIL-PRF-55342 Para 3.16 MIL-STD-202 Method 304

MIL-PRF-55342 Para 3.12

MIL-PRF-55342 Para 3.13 MIL-PRF-55342 Para 3.9 MIL-STD-202 Method 107

MIL-PRF-55342 Para 3.14.2

MIL-PRF-55342 Para 4.8.13

MIL-PRF-55342 Para 3.17 MIL-STD-202 Method 108 (rated voltage @ 70°C for 2000 hours)

*Min Value TCR 150 ppm for TaN and 25 ppm for NiC.	
*Higher Power ratings available, please consult factory.	

R Chip Dimensions

Performance Specifications

Typical Compex commercial testing includes 100% visual, mechanical, resistance, short time overload, and Resistance Temperature Characteristic. Our parts also meet or exceed additional MIL-PRF-55342 and MIL-STD-202 requirements outlined in the table at left. Please consult the factory for your exact testing requirements.

> Higher power ratings, additional sizes, and custom resistors available. Please contact factory to request free samples.

APPENDIX II: EXAMPLES OF MATHCAD FILES USED

Temperature increase of cryogenic resistor

Thermal conductivity

Thermal conductivity dependance with ambient temperature can be approximated by a funcion of the type:

$$k(T) = c + a \frac{T^{\alpha}}{1 + \left(\frac{T}{b}\right)^{\beta}}$$

Curves are taken from NISTIR 5030 by J. D. Simon, Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

Fused Silica Substrate

Digitized points data (full range, Touloukian)

Standard function (Origin)

A. :=		
S		0
	0	1.695 [.] 10 ⁻⁴
	1	105.471
	2	1.907
	3	1.72
	4	0.107

Logarithmic-Polynomial fit (Origin)

	0
0	-1.9321
1	0.6855
2	8.1525
3	-19.4883
4	18.5372
5	-8.6573
6	1.9872
7	-0.1801
	0 1 2 3 4 5 6 7

∏.:= 1K,2K.. 300K

Digitized points data (Nemoto)

=: LT		
~~~ <b>(</b> 4)^ *		0
	0	2.043
	1	2.48
	2	

k. :=		
MAK '		0
	0	0.423
	1	0.524
	2	

## Standard function (Origin)

$A_a :=$		
a		0
	0	6.08 [.] 10 ⁻³
	1	58.459
	2	2.542
	3	3.758
	4	0.3

Logarithmic-Polynomial fit (Origin)

Be

=		
		0
	0	-0.4887
	1	-1.4347
	2	11.0706
	3	-23.6159
	4	25.5901
	5	-13.9004
	6	3.6126



## Epotek H-20

Digitized points data (Amils thesis)

T. :=			k. := .		
~~~ <b>1</b> 4^		0	~~~~~		0
	0	3.21		0	0.031
	1	3.345		1	0.031
	2			2	

Standard function (Amils thesis)

$A_a :=$		
e		0
	0	4.307·10 ⁻³
	1	18.917
	2	1.593
	3	1.366

Calculations

Initial estimation

A rough approximation considering constant thermal conductivity:

Dissipated power in the resistor: $P := I^2 \cdot R$

$$\Delta T(k) := \frac{P}{A} \cdot H \cdot \frac{1}{k}$$
Vitreous silica @12 K: $k := k_{s7}(12K)$ $k = 0.129 \cdot \frac{W}{m \cdot K}$ $T_f := \Delta T(k) + T_0$ $T_f = 86.595 \text{ K}$
Alumina @12 K: $k := k_{a7}(12K)$ $k = 4.293 \cdot \frac{W}{K \cdot m}$ $T_{fr} := \Delta T(k) + T_0$ $T_f = 14.247 \text{ K}$

Second approximation

According to the Fourier law, the heat flux q in an uniform and isotropic material of thermal conductivity k:

$$\overrightarrow{\Phi}_{q} = -k \cdot \nabla T \qquad \text{for an unidimensional flux} \qquad \Phi_{q} = -k \cdot \frac{d}{dx} T \qquad (a)$$

The rate of variation of energy inside the material is equal to the flux of heat over the boundary surface S:

$$\frac{d}{dt}E = \int \stackrel{\longrightarrow}{\Phi_q} \frac{d}{ds} \qquad \text{for a uniform distribution} \qquad \Phi_q = \frac{P}{S} \qquad (b)$$

Integrating (a) y (b) from x_1 to x_2 we obtain the following expression:

$$P = \frac{S}{\Delta x} \cdot \int_{T_1}^{T_2} k(T) dT$$

In our case, x range is H, the heat flows only across a surface A from T_f to T_0 and the power transferred is P (we do not consider thermal radiation).

For vitreous silica:

Dado
$$P = \frac{A}{H} \cdot \int_{T_0}^{T_f} k_{s7}(T) dT$$
 $T_{fs} := Find(T_f)$ $T_{fs} = 54.02 K$

For alumina:

Dado
$$P = \frac{A}{H} \cdot \int_{T_0}^{T_f} k_{a7}(T) dT$$
 $T_{fa} := Find(T_f)$ $T_{fa} = 13.904 K$

Epoxy contribution

We consider now a layer of δ thickness of Epotek H-20 underneath the base of the resistor:

Dado
$$P = \frac{A}{\delta} \cdot \int_{T_0}^{T_f} k_e(T) dT$$
 $T_e := Find(T_f)$ $T_e = 14.338 K$

For vitreous silica:

Dado
$$P = \frac{A}{H} \cdot \int_{T_e}^{T_f} k_{s7}(T) dT$$
 $T_{fs} = Find(T_f)$ $T_{fs} = 54.853 \text{ K}$

For alumina:

Dado
$$P = \frac{A}{H} \cdot \int_{T_e}^{T_f} k_{a7}(T) dT$$
 $T_{fa} = Find(T_f)$ $T_{fa} = 15.708 K$

Current and Power - Temperature plots

Fused silica

Resistor	Height:	<mark>H</mark> ∷= 10·mil		
	Area:	A:= 20·mil·10·mil		
	Value:	$\mathbf{R} := 50 \cdot \mathrm{ohm}$		
Ероху	Thickness:	<u>δ</u> := 10·μm		
Module	Temperature:	<u>,T</u> @∧:= 14K		
	Current:	$\mathbf{I} \coloneqq 0 \cdot \mathbf{mA}, 0 \cdot 5 \cdot \mathbf{mA} \dots 20 \cdot \mathbf{mA}$	$\Pr(\mathbf{I}) := \mathbf{I}^2 \cdot \mathbf{R}$	$Pd(I) := \frac{P(I)}{A}$

Initial guess:

 $T_{\text{max}} = T_0 + 5K \qquad T_{\text{max}} = T_e + 40K$

$$\operatorname{Tot}_{\mathcal{M}}(I) \coloneqq \operatorname{root}\left(P(I) - \frac{A}{\delta} \cdot \int_{T_0}^{T_e} k_e(T) \, dT, T_e\right)$$

 $\underset{\text{Tre}(I)}{\text{Tre}(I)} \coloneqq \text{root} \left(P(I) - \frac{A}{H} \cdot \int_{T_e(I)}^{T_{fs}} k_{s7}(T) \, dT, T_{fs} \right) \\ \text{k}_{sc7} \text{ from cryogenic range only curve (Zeller and Pohl) is less pessimistic (less heating). Use only below 60 K. } \right)$

٠m

...

Alumina

Resistor	Height:	<mark>.H.:= 10⋅mil</mark>		
	Area:	A:= 20·mil·20·mil		
	Value:	$R := 50 \cdot ohm$		
Ероху	Thickness:	<u>δ</u> := 10·μm		
Module	Temperature:	$T_{M} = 14 \cdot K$		
	Current	$\mathbf{I} \coloneqq 0 \cdot \mathbf{mA}, 1 \cdot \mathbf{mA} \dots 40 \cdot \mathbf{mA}$	$\Pr(I) := I^2 \cdot R$	$\Pr(I) := \frac{P(I)}{A}$

Initial guess:

 $T_{\text{max}} = T_0 + 5K \qquad T_{\text{max}} = T_e + 20K$

$$\mathcal{T}_{\text{AVEA}}(I) \coloneqq \operatorname{root}\left(P(I) - \frac{A}{\delta} \cdot \int_{T_0}^{T_e} k_e(T) \, dT, T_e\right)$$
$$\mathcal{T}_{\text{fra}}(I) \coloneqq \operatorname{root}\left(P(I) - \frac{A}{H} \cdot \int_{T_e(I)}^{T_{fa}} k_{a7}(T) \, dT, T_{fa}\right)$$

Comparison (power density)

Power density (mW/mm^2)

Noise Temperature of Quartz Resistor Biased

Determined by noise power measurements at a fixed frequency with the resistor biased (on) and unbiased (off)

Tsys = Tamp +
$$\frac{Tnfm}{Gamp}$$
System noise temperature (known) (amplifier + Noise Figure Meter) $Y = \frac{Pon}{Poff}$ Y factor of resistor with/without bias (measured) $T_{Sys} = \frac{Th - Y \cdot Tc}{Y - 1}$ Tsys and Tc are known and Y is measured. Th can be calculated as:Th = Tc ·Y - Tsys + Tsys ·YTh = Tc · $\frac{Pon}{Poff} - Tsys + Tsys \cdot \frac{Pon}{Poff}$ Th = $\frac{Pon}{Poff} \cdot (Tc + Tsys) - Tsys$ $\frac{(Pon_dB-Poff_dB)}{Th = (Tc + Tsys) \cdot 10} - Tsys$ Example : $\frac{(Pon_dB-Poff_dB)}{10}$ Gamp(Gamp_dB) := $10^{\left(\frac{Gamp_dB}{10}\right)}$ Th(Pon_dB, Poff_dB, Tc, Tsys) := $(Tc + Tsys) \cdot 10^{-10} - Tsys$ Change the values in green for the calculation .Tamp := 6.18Tnfm := 1386.21Gamp_dB := 37.98Tc := 13.79Poff_dB := 26.06Pon_dB := 33.33

 $Tsys := Tamp + \frac{Tnfm}{Gamp(Gamp_dB)}$

Th(Pon_dB,Poff_dB,Tc,Tsys) = 101.283

Result : noise temperature of biased resistor

Tsys = 6.401

Building a table of Temperature vs Power

The source current is the parameter controlled to simplify the power calculation. This avoids accounting for voltage drop in the cables.

COMPEX QUARTZ 0102 @ 15 K

P	Power in mW	
		$\begin{pmatrix} 0 \end{pmatrix}$
		0.05
		0.2
		1.25
	$P_mW(I_mA) =$	2.45
		5
		11.25
		20

Area := 10·mil20·mil

	(13.79)
Th(Pon_dB,Poff_dB,Tc,Tsys) =	14.693
	17.104
	29.587
	38.593
	53.186
	76.805
	(101.532)

Area = 0.129 mm^2

Variables for the graph

4

5

6

7

29.54

30.76

32.21

33.34

$$P_qu := P_mW(I_mA)$$
$$Ps_qu := \frac{P_qu}{Area \cdot mm^{-2}}$$

Th_qu := Th(Pon_dB,Poff_dB,Tc,Tsys) Ps_qu is power (mW) per mm2 of surface

SOTA ALUMINA 0102 @ 15 K

I_mA :=		
//**///////////////////////////////////		0
	0	0
	1	1
	2	2
	3	5
	4	7
	5	10
	6	15
	7	20
	8	25
	9	30
	10	35
	11	40

$Poff_dB = 26.06$

Pon dB :=				
_		0		
	0	26.07		
	1	26.09		
	2	26.12		
	3	26.35		
	4	26.57		
	5	26.93		
	6	27.52		
	7	28.05		
	8	28.53		
	9	28.98		
	10	29.39		
	11	29.76		

Variables for the graph

$$P_al := P_mW(I_mA)$$
$$Ps_al := \frac{P_qu}{Area \cdot mm^{-2}}$$

Area := 20·mil20·mil

Power in mW

		0
	0	0
	1	0.05
	2	0.2
	3	1.25
	4	2.45
$P_mW(I_mA) =$	5	5
	6	11.25
	7	20
	8	31.25
	9	45
	10	61.25
	11	80

		0
	0	13.837
	1	13.93
	2	14.071
	3	15.184
	4	16.306
$Th(Pon_dB, Poff_dB, Tc, Tsys) =$	5	18.268
	6	21.858
	7	25.526
	8	29.257
	9	33.15
	10	37.065
	11	40.931

Th_al := Th(Pon_dB,Poff_dB,Tc,Tsys)

Ps_qu is power (mW) per mm2 of surface

eee alumina 0202