REALIZACIÓN DEL LOCAL TIE DE LAS DISTINTAS TÉCNICAS GEODÉSICAS-ESPACIALES EN EL OBSERVATORIO DE YEBES.

Beatriz Córdoba Hita, Javier López Ramasco

INFORME TÉCNICO IT - CDT 2018-20

Los desarrollos descritos en este informe técnico han sido cofinanciados por el Proyecto de investigación del Plan Nacional de investigación fundamental no orientada, FIS2012-38160 "ESTUDIOS Y DESARROLLOS INSTRUMENTALES DE GEODESIA ESPACIAL Y PRIMERAS MEDIDAS DE LINEAS DE BASE INTERCONTINENTALES CON PRECISIONES MILIMÉTRICAS"

Contenido

1.	INTRO	DUCCIÓN	1
2.	DESCR	RIPCIÓN DE LAS TÉCNICAS	2
3.	INSTR	UMENTACIÓN REQUERIDA	3
4.	ESTU	DIO DE LA VIABILIDAD Y DISEÑO DE LA RED GEODÉSICA DE PILARES	5
5.	DISEÑ	O DE LOS PILARES	7
6.	MEDI	DAS REALIZADAS	8
6	1 1		8
6	.1. I	MEDIDA FLARED CON LA ESTACIÓN TOTAL TS50	8
6	.3. (CÁLCULO DE LOS PUNTOS INVARIANTES DE LAS ANTENAS GNSS	
-	6.3.1.	YEB1	
	6.3.2.	YEBE	
6	.4. (CÁLCULO DE LOS PUNTOS INVARIANTES DE LOS RADIOTELESCOPIOS	14
	6.4.1.	Antena 13 metros	15
	6.4.2.	Antena 40 metros	
	6.4.3.	Comparación de los resultados de los puntos invariantes con el programa AXIS	
7.	ESTU	DIO DE LA PRECISIÓN DEL MULTIPRISMA	21
7	.1. (Con las medidas de la antena de 13 metros	22
7	.2. (Con las medidas de la antena de 40 metros	23
8.	AJUST	E DE LA RED CON GEOLAB	25
9.	TRAN	SFORMACIÓN DE LOS PUNTOS INVARIANTES AL SISTEMA DE LA RED LOCAL	29
10.	INTEG	RACIÓN EN LA RED DE LOS PUNTOS INVARIANTES	
11.	TRAN	SFORMACIÓN DE COORDENADAS DEL SISTEMA DE LA RED LOCAL AL SISTEMA GLOE	BAL IGB08
12.	RESU	MEN DE LOS PUNTOS INVARIANTES CALCULADOS. FORMATO SINEX	
13.	CÁLCI	JLO DEL LOCAL TIE A PARTIR DE LOS RESULTADOS OBTENIDOS	
14.	CONC	LUSIONES	
15.	REFEF	RENCIAS	41

1. INTRODUCCIÓN

El ITRF o marco de referencia terrestre internacional es el resultado de la combinación de los sistemas de referencia calculados a partir de las cuatro técnicas de geodesia espacial: GNSS (Global Navegation Satellite System), VLBI (Very Long Baseline Interferometry), SLR (Satellite Laser Ranging) y DORIS (Doppler). Para realizar la combinación entre dichos sistemas de referencia independientes es necesario disponer de emplazamientos en las que se disponga de varias de dichas técnicas que midan simultáneamente, así como de los vectores tridimensionales que las unen, llamados local ties.

En el centro de Desarrollos Tecnológicos de Yebes se dispone actualmente de dos de las cuatro técnicas de geodesia espacial, GNSS y VLBI. En cuanto a la técnica VLBI, se disponen de dos radiotelescopios, uno de ellos con una antena de 40 metros y el otro con una antena de 13 metros que sigue las especificaciones VGOS (VLBI Global Observing System). Por otro lado en cuanto a la técnica GNSS el Observatorio dispone de dos antenas YEBE y YEB1.

En este informe se van a detallar todos los trabajos llevados a cabo para obtener los local ties entre las distintas técnicas geodésicas situadas en el emplazamiento del Observatorio de Yebes, que según estipula GGOS (Global Geodetic Observing System) deben ser obtenidos con una precisión de 1 mm o inferior.

Con el fin de unir todas las técnicas y obtener el local tie con la precisión requerida es imprescindible el diseño de una red geodésica local de pilares en el entorno del observatorio. Desde dichos pilares se medirán distancias y ángulos horizontales y cenitales con precisiones muy elevadas a partir de una estación total con el fin de ajustar la red y calcular unas coordenadas de pilares muy precisas que nos permitan el cálculo del local tie con la precisión recomendada.

Para enlazar las técnicas primeramente se procederá a calcular los puntos de referencia invariantes (PRI) en un sistema local, tanto de las antenas GNSS con de las antenas VLBI, que posteriormente se transformarán en el sistema de la red haciendo uso de una transformación Helmert 3D de 7 parámetros (Molodensky-Badekas). Finalmente todas las coordenadas dadas en el sistema de la red local serán transformadas al sistema de referencia internacional IGb08.

2. DESCRIPCIÓN DE LAS TÉCNICAS

Como ya hemos señalado en la introducción el centro de Desarrollos Tecnológicos de Yebes dispone de dos antenas VLBI, una de 40 metros y otra de 13 metros que cumple con las especificaciones de VGOS, y dos antenas GNSS, YEBE, situada en el tejado del edificio de oficinas y que pertenece a la red IGS (International GNSS Service) y YEB1 situada en el tejado del pabellón de gravimetría y que pertenece a la red española ERGNSS. En la Figura 2.1 figuran los vectores entre las distintas técnicas que se quieren calcular, mientras que en la Figura 2.2 se pueden ver las distintas antenas de las técnicas que se quieren enlazar.

Figura 2.1

Figura 2.2

En la Tabla 2.1 se resumen las características principales de cada una de las técnicas geodésicas de las que dispone el Observatorio:

Space Geodetic Technique	Name	DOMES number	Antenna type/Receptor type/Support	Code/ 4-CID
VLBI	YEBES40M	134205002	40 m. RT. Cassegrein-Nasmith.	7389
VLBI RAEGYEB		134205003	13 m. RT. VGOS. RAEGE.	7386
GNSS	YEBE	13420M001	TRM29659.00/ TRIMBLE NETRS/1.2 m. concrete pillar	YEBE
GNSS	YEB1	13420M002	LEIAR25/ LEICA GRX+GNSS/1.2 m.	YEB1
			concrete pillar	
			Tabla 2.1	

3. INSTRUMENTACIÓN REQUERIDA

Entre la instrumentación que ha sido necesaria para llevar a cabo el local tie encontramos:

• Una estación total Leica TS50 con precisión de 0.5" y 0.6mm +1 ppm en ángulos y distancias respectivamente.

• 8 prismas GPH1P con una alta precisión de centrado de 0.3 mm y alcance de distancia de 3.500 m.

• 9 basadas GDF321 sin plomada óptica

Figura 3.3

• 1 trípode de madera GST20-9

Figura 3.4

• 8 Adaptadores GRT144 con precisión de centrado de 1 mm.

• 2 (RRR) Reflector Red-Ring (1.5" de diametro).

Figura 3.5

• 1 GPS (Leica GR25 con doble frecuencia y antena AR20).

- Una estación meteorológica portátil.
- Software Geolab.

4. ESTUDIO DE LA VIABILIDAD Y DISEÑO DE LA RED GEODÉSICA DE PILARES

Como ya se ha mencionado con anterioridad el primer paso en el cálculo del local tie ha consistido en diseñar una red de pilares que permita obtener la precisión requerida. Para ello, en primer lugar se realizó una preselección de los vértices intentando formar triángulos lo más equiláteros posible, y de manera que desde cada vértice exista el mayor número de visuales al resto de los vértices. Además cada una de las diferentes antenas tendrá que estar rodeada por un triángulo lo más equilátero posible formado por 3 pilares, que permitirá calcular con mayor precisión el PRI (Punto de Referencia Invariante) de cada técnica. Una vez preseleccionada la red se simula cuál sería la precisión que podríamos alcanzar con ese diseño y con la metodología que se utilice para medir la red.

Para conocer más sobre el procedimiento del diseño de la red se hace referencia al informe técnico CDT 2017-3: "Estudio planimétrico de la viabilidad y diseño de la red geodésica de pilares en el Centro de Desarrollos Tecnológicos de Yebes", Córdoba, B, López-Ramasco, J.

En la Figura 4.1 se muestra la configuración finalmente elegida que está compuesta de un total de 24 vértices (20 pilares a los que se suman las cuatro técnicas geodésicas).

Figura 4.1

Para generar la simulación de las medidas de la red se han usado datos de distancias y de ángulos con un error de 0.6 mm + 1 ppm y 2.5" respectivamente. Para realizar el ajuste de la red se ha usado el método de variación de coordenadas teniendo en cuenta ecuaciones de ángulos y de distancias y constreñimientos internos con la propiedad de que la solución estimada tiene una varianza mínima.

Las elipses de error de la Figura 4.2 nos muestran que en planimetría se pueden conseguir precisiones por debajo del milímetro.

La precisión con la que podríamos calcular los local ties entre las distintas técnicas de geodesia espacial la podemos ver en la Tabla 4.1.

Local Tie	Precisión (m)
VLBI40-VLBI13	0.0009
VLBI40-GNSS (YEBE)	0.0008
GNSS (YEBE)- GNSS (YEB1)	0.0007
VLBI13- GNSS (YEB1)	0.0007
VLBI13- GNSS (YEBE)	0.0007
VLBI40- GNSS (YEB1)	0.0008

Tabla 4.1

5. DISEÑO DE LOS PILARES

Una vez diseñada la red se llevó a cabo la construcción de 20 pilares de 1.30 m de altura. Recientemente se ha construido un nuevo pilar, pilar 25, que todavía no forma parte de la red. Los pilares están hechos de hormigón y hierro y están compuestos por un cilindro de 30 cm de diámetro dentro de un tubo protector. El espacio aislante de aire entre ellos es de 5cm. Para prevenir de las inclemencias los pilares están dotados de una tapa de metal en la parte superior y un orificio de drenaje en la parte inferior del pilar. La parte superior del pilar interno está formada por una plataforma redonda de 5mm de espesor de acero inoxidable. En el centro del pilar hay un tornillo de media estándar de 5/8" que permite el centrado forzoso de los prismas o de la estación total. Para llegar a la roca madre fue necesario excavar entre 1 y 1.5 metros.

La variación teórica de estos pilares debido a las dilataciones del hormigón armado es de 0.5 mm/año y 1mm/año en altura y en horizontal respectivamente. Sin embargo, el hecho de que existan veranos secos o inviernos húmedos puede hacer que estos valores sean más grandes. Por este motivo sería necesario realizar toma de series de medidas para estudiar su estabilidad y validarlos.

Para conseguir una precisión del local tie alrededor de 1-2 mm, la estabilidad de los pilares no debería exceder a desplazamientos de 2-3 mm al año.

Figura 5.1

Figura 5.2

Figura 5.3

6. MEDIDAS REALIZADAS

6.1. Medida y cálculo de las coordenadas a priori de los pilares con GNSS

Antes de medir y ajustar la red es necesario tener unas coordenadas aproximadas desde las cuales partir. Estas se pueden obtener de diversas maneras pero en nuestro caso se obtuvieron midiendo toda la red de pilares con una antena GNSS.

Para poder fijar, nivelar y orientar la antena GNSS se utilizó una plataforma de nivelación de 8 cm de altura aproximada de la marca SECO-MFG (Figura 6.1).

Figura 6.1

Se realizaron mediciones de más de 5 horas con un muestreo de 1 segundo sobre cada uno de los pilares y se calcularon, con el software libre RTKLIB, coordenadas X, Y, Z, así como la matriz de varianza covarianzas de las coordenadas en el sistema ETRS89 realizando líneas base con la estación fija YEBE, situada encima del edificio de oficinas. Las precisiones obtenidas fueron inferiores a los 5 mm.

6.2. Medida de la red con la estación total TS50

La red fue medida con la estación total TS50 midiendo ángulos y distancias desde cada pilar hasta todos los posibles pilares adyacentes. Las medidas fueron realizadas de forma automática a través de un software propio basado en el envío de comandos Geocom, que controla remotamente la estación total mediante cable o Bluetooth. La metodología de medición consistió en realizar 5 vueltas de horizonte midiendo cada visual en CD (círculo directo) y en CI (círculo inverso).

En cada estacionamiento se midió temperatura, presión y humedad, que la propia estación tendrá en cuenta para dar valores corregidos de distancias y ángulos, principalmente por refracción.

El factor de anamorfosis usado para la proyección UTM, en la propia estación fue de 1.

En todos los pilares, una vez colocadas las bases nivelantes, se midió, con un calibre y con la ayuda de una chapa de 3.4 mm, la altura al tornillo al que están referenciadas las medidas, medida que luego habrá que tener en cuenta para introducir la altura del instrumento en el programa de ajuste de la red. La altura final de la mira será, esta altura medida con el calibre

(basada al que habrá que restar posteriormente la anchura de la chapa de 3.4 mm) más la altura del prisma contante de 19.65 cm.

Los datos medidos con la estación, y grabados en un fichero en el ordenador han tenido que ser transformados a formato Geolab mediante software de elaboración propia.

6.3. Cálculo de los puntos invariantes de las antenas GNSS

El punto invariante de una antena se GNSS es un punto que se encuentra en el eje principal de simetría de la antena a una altura que viene determinada en las especificaciones y suele coincidir con la parte inferior de la antena.

En nuestro caso se han medido los puntos invariantes de las dos antenas GNSS de los que dispone el observatorio: YEB1 situada encima del edificio de gravimetría y YEBE situada encima del edificio de oficinas. Cada uno de ellos se ha medido de distinta manera.

6.3.1. YEB1

La estación GNSS YEB1 fue instalada en Abril de 2009 y pertenece a la Red Nacional Permanente de estaciones GNSS (ERGNSS). Como ya hemos señalado está situada encima del edificio de gravimetría. La antena está instalada sobre un pilar de hormigón armado de 1.20 m de altura y su punto invariante se encuentra 6 cm por encima de la parte superior del pilar.

La metodología seguida para medir el punto invariante en este caso, fue bastante sencilla ya que se obtuvo el permiso para sustituir la antena por un prisma GHP1 al cual se midió desde todos los pilares adyacentes. La micro red utilizada para medir este punto invariante está formada por los pilares P18, P19, P20 y P21 (Figura 6.4). Desde cada uno de ellos se midió tanto al prisma situado en la posición de YEB1, como al resto de los pilares que conforman la micro red a los cuales se tenía visual con el objetivo tanto de orientar como de reforzar la red.

Estos datos fueron introducidos en el ajuste total de la red, de donde se deducirá, como posteriormente veremos, el punto invariante de la antena GNSS YEB1.

6.3.2. YEBE

La estación GNSS YEBE fue instalada en Noviembre de 1992 y está situada en el tejado del edificio de oficinas. La antena está instalada sobre un pilar de hormigón armado de 1.20 m de altura. El punto de referencia invariante se encuentra situado en la parte superior del soporte de centrado coincidiendo con el ARP (Antenna Reference Point) de la antena.

YEBE pertenece a diversas redes:

- A la red nacional permanente de GNSS (ERGNSS).

- A la red permanente EUREF (EPN).
- Al servicio internacional de GNSS (IGS).
- A la red TEIDE.

Debido a la importancia de este punto y su fragilidad por antigüedad, no se obtuvo el permiso para desinstalar la antena y colocar un prisma en su lugar, motivo por el cual se tuvo que recurrir a otras técnicas más complejas para determinar el punto de referencia invariante de YEBE. La técnica que se llevó a cabo distingue entre planimetría y altimetría y se midió usando de nuevo una micro red con los pilares que rodean la antena, estos son P6, P7, P8 y P9 (Figura 6.9), cuyas coordenadas encontramos en la Tabla 6.1.

Figura 6.9

Pilar	Coordenadas en el Sistema Local Plano					
	N E H					
6	4487772.0995 <u>+</u> 0.0004	492423.4710±0.0003	970.1789±0.0006			
7	4487758.3373 <u>+</u> 0.0004	492545.1463±0.0003	970.0898±0.0006			
8	4487810.3012±0.0004	492552.3371±0.0004	968.0385±0.0006			
9	4487844.2079 <u>+</u> 0.0004	492549.0472 <u>+</u> 0.0005	966.6877±0.0006			

Tabla	6.1
-------	-----

La altura de la antena en este caso se ha considerado 0.

Veamos el procedimiento seguido para el cálculo del punto invariante, que como ya se ha señalado se separó en planimetría y altimetría.

<u>Planimetría</u>

Para el cálculo de la planimetría del punto invariante se midió, desde los pilares que conforman la micro red, el eje de simetría de la antena usando el bastón que la sostiene biseccionando con el hilo de la puntería de la estación total. A partir de dichas medidas utilizando el método de intersección directa, e introduciendo las coordenadas de los pilares en el ajuste de la red se dedujeron las coordenadas planimétricas.

Las medidas entre los pilares de la micro red fueron usados tanto para determinar la posición de YEBE como para reforzar la red.

En la Tabla 6.2 podemos ver las coordenadas planimétricas, del punto invariante (x_c, y_c) obtenidas en el sistema local de la red (Este-Norte).

Coordenadas Planimétricas del centro				
$x_c: Este$ $y_c: Norte$				
492489.8847 <u>+</u> 0.0006	4487817.2794 <u>+</u> 0.0005			

2

<u>Altimetría</u>

El cálculo de la altimetría se llevo a cabo apuntando a la esquina superior de la antena GNSS desde cada uno de los pilares que la rodean. A estos puntos pertenecientes al eje vertical los hemos llamado 106, 107, 108 y 109 y han sido medidos utilizando únicamente medidas de ángulos verticales. Coinciden en planimetría con las coordenadas del punto invariante pero la altimetría de cada uno de ellos es distinta. A estas alturas hay que aplicarles una corrección *x* para bajarlas a la parte superior del la antena GNSS (Figura 6.14)

Por semejanza de triángulos x y su desviación típica $\sigma_{\!x}$ vienen dadas por:

$$x = \frac{18.05}{D_h} \frac{\Delta z}{\Delta z}$$
$$\sigma_x^2 = \left(\frac{\partial x}{\partial \Delta z}\right)^2 \sigma_{\Delta z}^2 + \left(\frac{\partial x}{\partial D_h}\right)^2 \sigma_{D_h}^2$$

donde

$$\frac{\partial x}{\partial \Delta z} = \frac{18.05}{D_h}$$
$$\frac{\partial x}{\partial D_h} = \frac{-18.05\Delta z}{D_h^2}$$

 D_h es la distancia entre (x, y) y (x_c, y_c) y σ_{D_h} su desviación:

$$D_h = \sqrt{(x_c - x)^2 + (y_c - y)^2}$$
$$\sigma_{D_h}^2 = \left(\frac{\partial D_h}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial D_h}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial D_h}{\partial x_c}\right)^2 \sigma_{x_c}^2 + \left(\frac{\partial D_h}{\partial y_c}\right)^2 \sigma_{y_c}^2$$

siendo:

$$\frac{\partial D_h}{\partial x} = \frac{x - x_c}{D_h}$$
$$\frac{\partial D_h}{\partial y} = \frac{y - y_c}{D_h}$$
$$\frac{\partial D_h}{\partial x_c} = \frac{x_c - x}{D_h}$$
$$\frac{\partial D_h}{\partial y_c} = \frac{y_c - y}{D_h}$$

y Δz y su desviación $\sigma_{\!\Delta z}$

$$\sigma_{\Delta z}^{2} = \left(\frac{\partial \Delta z}{\partial D_{h}}\right)^{2} \sigma_{D_{h}}^{2} + \left(\frac{\partial \Delta z}{\partial \alpha}\right)^{2} \sigma_{\alpha}^{2}$$

 $\Delta z = D_h \cdot \tan \alpha$

siendo α el ángulo de medida

donde:

$$\frac{\partial \Delta z}{\partial D_h} = \tan \alpha$$
$$\frac{\partial \Delta z}{\partial \alpha} = \frac{D_h}{(\cos \alpha)^2}$$

Finalmente las x que hay que corregir a cada altura así como las alturas alcanzadas en el punto (x_c, y_c) corregidas por x vienen dadas en las Tablas 6.3 y 6.4 respectivamente:

Pilar	x		
6	0.00578130 <u>+</u>		
	0.00000015		
7	0.00596630 <u>+</u>		
	0.00000015		
8	0.0135636 <u>+</u>		
	0.0000002		
9	0.0168662±		
	0.0000003		
Tabla 6.3			

Puntos	Punto invariante			
106	972.9742			
107	972.9738			
108	972.9745			
109	972.9737			
Media	972.9740 <u>+</u> 0.0004			
Tabla 6.4				

Por último hay que tener en cuenta que a este valor de altura hay que restarle la altura desde la parte superior de la antena hasta el IRP, es decir -0.102 m.

En la Tabla 6.5 se resumen las coordenadas del punto invariante de la antena GNSS YEBE en coordenadas Norte/Este/Altura y en X, Y, Z:

YEBE (Punto 15)	NORTE	ESTE	ALTURA	
	4487817.2794±0.0005	492489.8847 <u>+</u> 0.0006	972.8720 <u>+</u> 0.0004	
	Х	Y	Z	
	4848724.9845±0.0004	-261632.4726 ± 0.0006	4123093.9855±0.0005	

Tabla 6.5

6.4. Cálculo de los puntos invariantes de los radiotelescopios

El punto invariante de un radiotelescopio se define como la intersección entre su eje de azimut y el de elevación y en el caso de que no intersequen, se define como la proyección del eje de elevación sobre el eje de azimut. Normalmente este punto es inaccesible o no está materializado.

Existen diversos métodos para realizar su cálculo. Nosotros hemos utilizado el método clásico de los círculos, que consiste en el ajuste de puntos medidos sobre la estructura del radiotelescopio bajo ciertas condiciones o constreñimientos a unos círculos 3D. En este modelo el

radiotelescopio es rotado alrededor de uno de sus ejes dejando el otro fijo, de manera que la trayectoria de cada marcador corresponde a un círculo. Este proceso se repite para distintas orientaciones del radiotelescopio y para ambos ejes. Se puede obtener una información detallada de la metodología usada en el informe técnico: "Cálculo del punto invariante de una antena. Método de ajuste clásico por círculos. Aplicación al radiotelescopio RAEGE del Observatorio de Yebes", Beatriz Córdoba Hita, Javier López Ramasco.

En resumen el método consiste **en primer lugar** <u>calcular el eje de azimut</u> para lo cual se utilizan observaciones a un prisma durante la rotación del radiotelescopio alrededor del eje de azimut para distintas elevaciones.

En segundo lugar <u>calcular los Ejes de Elevación</u> para lo cual se realizan observaciones a un prisma durante la rotación del radiotelescopio alrededor de los ejes de elevación para distintos acimutes. Los centros de los arcos ajustados junto con el vector normal de cada arco de circunferencia generan los ejes de elevación.

Las observaciones son ajustadas a círculos en el espacio (intersección entre una esfera y un plano), teniendo en cuenta además que el centro de la esfera debe satisfacer la ecuación del plano. En el ajuste se determinan los parámetros de cada circunferencia (centro y radio).

Las ecuaciones del ajuste son:

Esfera

$$F(L,X) = (x_i - a)^2 + (y_i - b)^2 + (z_i - c)^2 - r^2$$

Plano:

$$G(L,X) = A \cdot x_i + B \cdot y_i + C - z_i$$

Constreñimientos:

$$H(L,X) = A \cdot a + B \cdot b + C - c$$

donde (a, b, c), r son el centro y el radio de la esfera y A, B, C son los parámetros del plano.

6.4.1. Antena 13 metros

Para el cálculo del punto de referencia invariante en la antena de 13 metros se han utilizado dos metodologías distintas: utilizando un pilar interior de la cabina del radiotelescopio y utilizando los pilares exteriores.

6.4.1.1. Metodología 1: Medición desde el interior de la cabina

En este caso, el punto invariante ha sido calculado colocando la estación total TS50 en el pilar central del radiotelescopio (al que se han dado unas coordenadas fijas de (1000, 2000, 3000)) sobre un trípode solidario a la torre de hormigón del radiotelescopio (Figura 6.15).

Para mayor seguridad por el escaso espacio de estacionamiento, el trípode fue sujeto con unas bridas a la chapa del pilar central y fue elevado lo suficiente para poder tener visibilidad a los pilares exteriores a través de dos ventanas circulares situadas en cada uno de los contrapesos y permitir hacer una intersección inversa desde ellos (Figura 6.18).

Las medidas se realizaron apuntando a un reflector Corner cube "RRR Hexagon" con una precisión de construcción de 0.0001 mm que fue adosado magnéticamente en el interior de ambos contrapesos (Figuras 6.16 y 6.17).

Figura 6.16

Figura 6.18

Para realizar la observación se movió la antena de 7 a 87º en elevación cada 20 º y de 0 a 360º en acimut con un tiempo de espera entre observaciones de 40 segundos. Sincronizada al movimiento del radiotelescopio se movió la estación total haciendo un seguimiento al prisma.

En la Figura 6.19 se muestra un ejemplo de los círculos horizontales ajustados:

Una vez acabada la medida de los círculos, se realizaron medidas a los pilares exteriores para posicionar el pilar interior de la cabina en el sistema de nuestra red.

En la Tabla 6.6 se muestran las coordenadas obtenidas de los pilares V1, V2 y V3 desde el interior de la cabina en las coordenadas locales del sistema con centro (1000, 2000, 3000).

	x	У	z	σ_x	σ_y	σ_z
v1	978.846658	2020.871601	2990.070556	0.000074	0.000148	0.000071
v2	1004.480675	1969.629860	2991.011311	0.000135	0.000093	0.000021
v3	1025.557567	2017.089360	2991.589699	0.000043	0.000068	0.000071
			Tabla 6.6			

6.4.1.2. Metodología 2: Medidas desde los pilares exteriores

En este caso el punto invariante ha sido calculado desde los pilares exteriores V1, V2 y V3 de forma independiente haciendo observaciones a dos multi-prismas colocados en los contrapesos del radio telescopio. En este caso la precisión de las medidas es algo peor pues la cantidad de observaciones para cada círculo horizontal se reduce debido a la falta de visibilidad desde cada pilar.

Un ejemplo de los arcos de círculo verticales y horizontales para ambos contrapesos desde uno de los pilares los podemos ver en las Figuras 6.20, 6.21 y 6.22.

Figura 6.20

Desde cada vértice se calculó el punto invariante y los parámetros de la antena en un sistema local distinto. En cada uno de los vértices se consideró un sistema local con centro fijo (1000, 2000, 3000).

6.4.1.3. Resultados

Todos los cálculos realizados han sido comprobados con el programa AXIS llegando a los mismos resultados. En la Tabla 6.7 podemos ver un resumen de todos los puntos invariantes calculados por las distintas metodologías en sus sistemas locales:

Punto invariante			Excentricidad (m)	Inclinación antena	No ortogonalidad	
	x(m)	y(m)	z(m)		respecto la normal (")	(")
DENTRO DE LA CABINA	999.995744 ±0.000005	1999.985069 ±0.000004	2999.4148 ±0.0004	0.0015±0.0008	-18.2±0.3	-1 <u>±</u> 19
DESDE V1	1016.9103 ±0.0006	2024.4467 ±0.0003	3009.1247 ±0.0007	0.0021±0.0009	- 30 ± 5	-24 ±18
DESDE V2	991.7959 ±0.0007	1970.4331 ±0.0005	3008.1757 ±0.0009	0.0019±0.0011	-8±6	90±26
DESDE V3	990.2755 ±0.0006	2029.1783 ±0.0012	3007.5961 ±0.0018	0.0014±0.0016	-28 <u>+</u> 3	- 39 ±13

Tabla 6.7

6.4.2. Antena 40 metros

En el caso de la antena de 40 metros solo ha sido posible medir la antena desde los pilares exteriores al radiotelescopio ya que no existe un pilar central como en el caso de la antena de 13 metros. La metodología ha sido por tanto igual que para el cálculo del punto invariante de la antena de 13 metros, midiendo a dos multi-prismas colocados en los contrapesos de la antena de 40 metros desde los tres pilares exteriores con los que poder comparar resultados. En este caso

los vértices desde los que se ha medido son V10, V12 y V13. En cada uno de ellos se consideró un sistema local con centro fijo (1000,2000, 3000) (Figura 6.23).

Figura 6.23

En la Tabla 6.8 podemos ver todos los puntos invariantes calculados desde los distintos pilares en sus sistemas locales:

RESUMEN INFORMACIÓN DEL PUNTO INVARIANTE DE LA ANTENA DE 40 METROS (corregidos datos de errores groseros)										
		Punto invariante		Excentricidad (m)	idad Inclinación antena ortog respecto la					
	x(m)	y(m)	z(m)		normal (")	()				
DESDE V10	1031.587±0.002	1990.7866±0.0007	3020.280±0.002	2.005±0.005	-6±5	-54±36				
DESDE V12	989.8568±0.0009	1969.9515±0.0005	3020.8831±0.0018	2.005±0.003	-20±4	97±31				
DESDE V13	970.1790±0.0012	1988.57344±0.0004	3020.9055±0.0016	2.007±0.003	-18±4	87±25				

Tabla 6.8

6.4.3. Comparación de los resultados de los puntos invariantes con el programa AXIS

Para contrastar los resultados obtenidos se han realizado los cálculos de los puntos invariantes tanto de la antena de 13 metros como de la de 40 metros a partir de todas las medidas tomadas desde todos los pilares exteriores y en el caso de la antena de 13 metros también desde las medidas tomadas desde el pilar interior con otro programa proporcionado por Altamimi. Axis 1.07. En la Tabla 6.9 se puede ver un resumen de las diferencias entre los puntos invariantes calculados y las excentricidades con ambos programas obteniendo diferencias que están por debajo de la precisión con la que están calculados los puntos en la mayoría de los casos. Para poder comparar los resultados, se han transformado los datos s un sistema local centrado en el (0,0,0).

			Este	Norte	Up	Excentricidad
Antena 13m	Pilar	Mi programa	-0.0043±0.000007	-0.0149±0.000002	-0.5855±0.00003	0.000095±0.000062
	Intorior	Axis	-0.0043	-0.0150	-0.5854	0.0006
	interior	Diferencia	0	0.0001	0.0001	0.0005
	Pilar V1	Mi programa	16.9103 <u>+</u> 0.0006	24.4467 <u>+</u> 0.0003	9.1247 <u>+</u> 0.0007	0.002133±0.0009
		Axis	16.9104	24.4468	9.1236	0.00236
		Diferencia	0.0001	0.0001	0.0011	0.0002
	Pilar V2	Mi programa	-8.2041 <u>+</u> 0.0007	-29.5669 <u>+</u> 0.0005	8.1757 <u>±</u> 0.0009	0.001851 ± 0.0011
		Axis	-8.2041	-29.5669	8.1737	0.00169
		Diferencia	0	0	0.002	0.00016
	Pilar V3	Mi programa	-9.7245 <u>+</u> 0.0006	29.1783 <u>+</u> 0.0012	7.5961 <u>+</u> 0.0018	0.00136 ± 0.0016
		Axis	-9.7245	29.1784	7.5948	0.00178
		Diferencia	0	0.0001	0.0013	0.0004
Antena 40m	Pilar V10	Mi programa	31.5875 <u>+</u> 0.002	-9.2134 ±0.0007	20.2802±0.002	2.004909±0.005
		Axis	31.5864	-9.2141	20.2814	2.004
		Diferencia	0.0011	0.0007	0.0012	0.0009
	Pilar V12	Mi programa	-10.1432 <u>+</u> 0.0009	-30.0485±0.0005	20.8831±0.0018	2.005458 <u>+</u> 0.003
		Axis	-10.1433	-30.0484	20.8826	2.0043
		Diferencia	0.0001	0.0001	0.0005	0.0012
	Pilar V13	Mi programa	-29.8210 <u>+</u> 0.0012	-11.4266 ±0.0004	20.9055±0.0016	2.007377 <u>+</u> 0.003
		Axis	-29.8207	-11.4266	20.9034	2.0045
		Diferencia	0.0003	0	0.0021	0.0029

Tabla 6.9

7. ESTUDIO DE LA PRECISIÓN DEL MULTIPRISMA

A partir de las medidas realizadas a los multi-prismas colocados en los contrapesos de las antenas de 13 y 40 metros desde los pilares exteriores se puede realizar un estudio de la precisión con la que se puede medir con dichos multi-prismas.

Cada multi-prisma está formado por 4 prismas pequeños pegados (Figura 7.2), que hacen que reflejen la señal independientemente del ángulo con el que se miren. El diseño se puede ver en la Figura 7.1.

Figura 7.1

Figura 7.2

Para estudiar la precisión se ha realizado un estudio de los residuales de los datos ajustados a los círculos desde los distintos pilares. En las siguientes tablas (Tablas 7.1, 7.2, 7.3, 7.4, 7.5, 7.6) se ha juntado la precisión relativa a los residuales del ajuste mínimos cuadrados de los arcos y los círculos para ver la precisión con la que podemos medir usando el multi-prisma.

7.1. Con las medidas de la antena de 13 metros

	ESTUDIO DE LA PRECISIÓN DEL MULTIPRISMA DESDE V1											
Residual	Contrapeso Derecho											
medio de	Arco Az.40º	Arco Az.60º Arco Az.80º			Arco Az.1	00º Arco Az. 120º			A	rco az.140º	Arco 160º	
cada arco	0.000465±0.000320	0.000411±	0.000178	0.000280±0.000153 0.000269±0.0000		30148 0.0	0.001037±0.000533		0.000574±0.000164		0.000096±0.000053	
					Contrapes	o Izquierdo						
	Arco Az. 0º	Arco Az	.202	Arco Az. 260?	Arco Az. 280º	Α τοο Α	z.3002	Α τοο Α	z.3202	Arco Az. 340º	Arco Az. 360º	
	0.000226±0.00013	0.000367±0	0.00010 0.0	000269±0.00016	0.000198±0.00016	0.000370	0.00022	0.000290	80000.04	0.000313±0.00013	0.000213±0.00012	
	6	0	0		3	8		3		2	4	
Res. medio	0.000358±0.000221											
de todos los												
arcos												
Res.	0.001634											
máximo de												
Todos los												
arcos												
Residual					Contrapes	o Derecho						
medio de	Círculo El. 3	7º	Círe	culo El. 27º	Círculo E	Círculo El. 47º Ci			irculo El. 67º		Círculo El. 87º	
cada circulo	0.000440±0.000310		0.000721	0.000482	0.00028510.0001	66	0.000	6371 0.000	000428 0.000377 0.000268			
horizontal					Contrapes	o Izquierdo)					
	Círculo El. 3	7º	Círe	culo El. 27º	Círculo I	I. 47º		Círc	ulo El. 67º		Círculo El. 87º	
	0.000467 0.000181		0.00050610	0.000221	0.00039910.0002	68	0.000	70010.0004	468	0.0007	49 0.000309	
Res. Medio	0.000528±0.000153											
de todos los												
círculos												
horizontale												
S												
Res.	0.000749											
maximo de												
todos los												
circulos												

Tabla 7.1

			ESTU	DIO DE LA PREC	ISIÓN DEL MULTIPRIS	MA DESDE V2					
Revisional constitu-	T				Contranera D	way ha					
de ande anne		A	A		Contrapeso Defectio						
ue caua arco	Arco	AICO A7.702	A1C0 A7, 40		0º ATCO A/. 280º ATCO		≤ AICO A7.370≤	AICO AZ. 3	402	ATCO A7. 3002	
	₩. 02										
	0.00012	0.000291±0.000	0.000258±0.0001	0.000891±0.00	06 0.000438 <u>+</u> 0.0002	0.000478±0.00	02 0 000278±0 0001	0.000241±0	0001	0.000751±0.0006	
	310.000 G4 34 11		11	71 29 3		36	36 14		44		
		Contrapeso Izquierdo									
	Arco Az, 120° Arco az.140° Arco 160° Arco Az, 180° Arco az.200° Arco 240°									Arco 240º	
	0.000318±0.000208 0.000135±0.000044 0.00049±0.000279 0.000431±0.000329 0.000244±0.000098 0.0									00272 <u>+</u> 0.000245	
Res. medio de	0.000372	JU3 / 2 ± 0.000214									
todos los arcos											
Res. máx. de	0.001926									-	
todos los arcos											
Res. medio de					Contrapeso D	erecho					
cada círculo	Círc	ulo El. 7º	Círculo El. :	279	Circulo El.	47º	Círculo El. 67	2	Cí	culo El. 87º	
horizontal	0.000551	0.000397	0.000089 0.000431		0.000749 0.000436		0.00000710.000271	0.0	00355	0.000243	
					Contrapeso Izo	uierdo					
	Círc	ulo El. 7º	Círculo El. :	279	Circulo El.	47º	Círculo El. 67	2	Cí	culo El. 87º	
	0.000359	0.000166	0.00009210.000515		0.000399±0.000165		0.00071210.000132	0.0	00531	10.000233	
Res.Medio de	0.000564	0.000151									
todos los círculos											
Res. máx. de	0.000749										
todos los círculos											

Tabla 7.2

		ESTUDIO DE	LA PRECISIÓN DEL MUL	TIPRISMA DESDE V	3						
Residual medio de cada		Contrapeso Derecho									
arco	Arco 160º	Arco Az. 180º	Arco az.200º	Arco Az.20º	Arco Az. 260º	Arco Az. 280º					
	0.000/97±0.000269	0.000305±0.000173	0.000219±0.000056	0.000149±0.00008	2 0.000714 <u>+</u> 0.00030	4 0.000547±0.000240					
			Con	trapeso Izquierdo							
	Arco Az. 0º	Arco Az. 209	Arco Az. 60º	Arco Az.809	Arco Az. 100º	Arco Az.120º					
	0 000141±0 000094	0141±0.000094 0.000176±0.000089 0.000393±0.000204 0.000512±0.000198 0.000255±0.000173 0.000504±0.000282									
Residual medio de todos	0.000351±0.000182	10551±0.000182									
los arcos											
Residual máximo de todos	0.001015).001015									
los arcos											
Residual medio de cada			Cor	ntrapeso Derecho							
círculo horizontal	Circulo El. 7º	Circulo El.	27º Círcul	5 EL 47º	Circulo El. 67º	Circulo El. 87º					
	0.000745 <u>+</u> 0.000725	0.000597 <u>+</u> 0.0004	./0 0.000730 <u>+</u> 0.	000366 0.00	01137 <u>+</u> 0.000443	0.000403±0.000259					
			Con	trapeso Izquierdo							
	Círculo EL 7º	Círculo FL :	27º Círcul	i Fl. 47≌	Círculo El. 67º	Circulo El. 872					
	0.000850+0.000456	0.000535+0.0004	31 0.000569±0.	000310 0.00	00871+0.000652	0.000445+0.000187					
Residual Medio de todos	0.000688±0.000224										
los circulos horizontales											
Residual máximo de todos	0.001137										
los circulos											

Tabla 7.3

7.2. Con las medidas de la antena de 40 metros

		ESTUDIO DE LA	OPECISIÓN DEL MULTIDOISTAN	DESDE VIA							
		ESTUDIO DE LA	PRECISION DEL WOLTPRISIMAT	JESDE VIU							
Residual			Contrapeso Derecho								
mediode	Arco Ar.1002 Arco Ar.1202 Arco Ar.1602 Arco Ar.1802 Arco Ar.2002 0.0016±0.0009 0.0013±0.0008 0.0012±0.0009 0.0013±0.0011 0.0023±0.0016										
cada arco	0.0016 ± 0.0009	0.0013±0.0008	0.0012±0.0009	0.0013±0.0011	0.0023±0.0016						
			Contrapeso Izquierdo								
	Arco Ar. 0º	Arco A7.209	Arco Az. 40º	Arco A/, 60º	Ar(1) A7.3209						
	0.0010±0.0004	0.0011 <u>+</u> 0.0009	0.0009 <u>+</u> 0.0005	0.0009±0.0005	0.0013±0.0005						
Res. medio											
de todos los	0.0013_0.0004										
arcos											
Res.											
máximo de	0.0045										
Todaslos	0.00m										
arcos											
Residual			Contrapeso Derecho								
mediode	Círculo El. 7º	Círculo El. 27º	Círculo El. 47º	Círculo El. 67º	Círculo El. 87º						
cada círculo	0.0006 <u>+</u> 0.0001	0.0007±0.0004	0.0006±0.0004	0.0004±0.0002	0.0006±0.0006						
horizontal			Contrapeso Izquierdo								
	Círculo Fl. 7º	Círculo Fl. 27º	Círculo Fl. 47º	Círculo Fl. 67º	Círculo Fl. 87º						
	0.0006±0.0002	0.0005±0.0003	0.0006∓0.0003	0.0007±0.0003	0.0008 <u>+</u> 0.0006						
Res. Medio											
de todos los	0.00061+0.00011										
circulos											
horizontales											
Res.											
maximo de	0.0008										
todoslos											
circulos											

Tabla 7.4

		EST	UDIO DE LA PRECI	SIÓN DEL MU	LIIPRISMA	A DESDE V12						
Residual				Contrape	so Derech	0						
medio de	Arco Az.220º	Arco Az.240º	ΑιωΑ	£.260º	AICO	Az.280º		Arco A4. 300º	Arco az.320º	Arco az.320º		
cada arco	0.0015±0.0010	0.0010±0.0007	0.0012 <u>+</u> 0.000	±0.0007 0.0013±0.0007			0.0009	±0.0003	0.0014±0.0010	-		
				Contrapes	o Izquierd	lu						
	Arco Az. 60º	Arco Az.80º	Arco Az. 100º	Arco Az	140º	Arco Az.160º	Arco Az. 180º					
	0.0011 <u>±</u> 0.0003	0.0011±0.0005	0.0011±0.0006	0.0004 7 0.00	07	0.0010±0.0006 0.0010±0.0006			0.0010 <u>+</u> 0.000P			
Res. medio												
de todos los	0.001.1 <u>±</u> 0.0002	0.002										
arcos												
Res.												
máximo de	0.003											
todos los	0.005											
arcos												
Residual				Contrape	so Derech	0						
medio de	Círculo El. 7º	Círculo	El. 27º	Círculo E	. 47º		Circulo	El. 67º	Círculo El. 87º			
cada circulo	0.0007 <u>+</u> 0.0003	0.0007 <u>+</u>	0.0003	0.0005±0	0002		0.0005	<u>+0.0002</u>	0.0005 <u>+</u> 0.0003			
horizontal				Contrapes	o Izquierd	lo						
	Círculo El. 7º	Círculo	El. 27º	Círculo E	. 47º		Circulo	El. 67º	Círculo El. 87º			
	0.0004 <u>±</u> 0.0002	0.00050 <u>H</u>	0.00018	0.0004 <u>±</u> 0	0002		0.0005	E0.0002	0 00035 <u>±</u> 0 00009			
Res. Medio												
de todos los	0.00049+0.00011											
circulos	-											
horizontales												
Res.												
maximo de	0.0007											
todos os												
circulos												

Tabla 7.5

			ESTUDIO DE LA PRE	ECISIÓN DEL MULTIPR	ISMA DESDE V13				
Residual				Contrapeso De	recho				
medio de	Arco Az.0º	Arco Az.20º	Arco Az.40º	Arco Az.60º	Arco Az. 80º	Arco az.100º	Arco 340º		
cada arco	0.0011±0.0007	0.0015±0.0006	0.0013±0.0005	0.0011±0.0007	0.001073±0.000853	0.0012±0.0007	0.0011±0.0006		
				Contrapeso Izq	uierdo				
	Arco Az. 180º	Arco Az.200º	Arco Az. 220º	Arco Az. 240º	Arco Az.260º	Arco Az.280º	Arco Az. 3002		
	0.001210.0007	0.0012 <u>1</u> 0.0007	0.0013_0.0010	0.0010 0.0008	0.0009 <u>1</u> 0.0005	0.0012_0.0007	0.0013 <u>1</u> 0.0006		
Res. medio	0.00118±0.00016								
de todos los									
arcos									
Res.	0.003								
máximo de									
todos los									
arcos									
Residual				Contrapeso De	recho				
medio de	Círculo El. 7	° Cír	culo El. 27º	Círculo El. 47º	Círc	ulo El. 67º	Círculo El. 87º		
cada círculo	0.0006±0.0002	0.00052±0	0.00017	0.0007 <u>+</u> 0.0003	0.0010±0.0005		0.00050±0.00017		
horizontal				Contrapeso Izq	ulerdo				
	Círculo El. 7	º Cír	culo El. 27º	Círculo El. 47º	Círc	ulo El. 67º	Círculo El. 87º		
	0.0006±0.0002	0.0008 <u>+</u> 0)	0004	0.0003 <u>+</u> 0.0002	0.0004 <u>+</u> 0.0002		0.00057 <u>±</u> 0.00014		
Res. Medio	0.00000 <u>1</u> 0.00019								
dc todos los									
círculos									
horizontales									
Res.	0.00098								
máximo de									
todos los									
círculos									

Tabla 7.6

8. AJUSTE DE LA RED CON GEOLAB

Una vez tomadas todas las medidas y calculados los puntos invariantes de las antenas VLBI y una de las antenas GNSS (YEBE), el siguiente paso es ajustar la red de todos los pilares con todos los datos medidos, incluyendo las micro redes medidas para calcular los puntos invariantes de la antena de 13 y 40 metros y las antenas GNSS. El ajuste se ha realizado usando la versión 5.3.2 de GeoLabPX5.

Los resultados obtenidos han sido los siguientes:

Description	Number	Description	Number
No. of Stations	23	Directions	683
Coord Parameters	60	Distances	663
Free Tatlitudes	23	Az imuths	I 0
Free Longitudes	23	Vertical Angles	0
Free Heights	22	Zenithal Angles	663
Fixed Coordinates	1	Angles	0
Astro: Tatitudes	0	Heights	0
Astro. Longitudes	0	Height Differences	0
Geoid Records	U	Auxiliary Params.	0
All Aux. Pars.	37	2-D Coords.	0
Direction Pars.	37	2-D Courd, Diffs.	0
Scale Parameters	0	3-D Coords.	60
Constant Pars.	U	3-D Coord, Diffs.	0
Rotation Pars.	0		
Translation Pars.	0		
1			
i i			
Total Parameters	105	Total Observations	2069
	Degrees of F	reedon – 1964	

	SUMMARY OF SELECTED OPTIONS										
-	OPTION	I	SELECTION	-							
	Conjustation Mode	1	Adjustment.								
	Maximum Iterations	1.1	50								
	Convergence Criterion	1.1	0.00010								
	Angular Misclosure Limit Factor	- i -	5.00								
	Linear Misclosure Limit Factor	1	5.00								
	Residual Rejection Criterion	1.1	Tau Max								
	Confidence Region Types	1.1	1D 2D Station Relative								
	Relative Confidence Regions	1	Connected Only								
	Variance Factor (VF) Known	1.1	Yes								
	Scale Covariance Matrix With VE	1.1	Yes								
	Scale Residual Variances With VF	- i -	Yes								
	Force Convergence in Max Iters	- i -	No								
	Distances Contribute To Heights	- i -	No								
	Compute Full Inverse	1	Yes								
	Optimize Band Width	- i -	Yes								
	Generate Initial Coordinates	- i -	Yes								
	Re Transform Obs After 1st Pass	- i -	Yea								
	Geoid Interpolation Method	- i -	Bi-Ouadratic								

El resumen estadístico:

Coordenadas ajustadas Norte, Este y altura:

		NORTHING	EASTING	O-HEIGHT			
CODE FFF	STATION	STD DEV	STD DEV	STD DEV	MAPPROJ		
NEO	1	4487635.5231	492479.4756	967.7174	UTM 30	m	0
		0.0004	0.0004	0.0006			
NEO	10	4487783.3741	492607.5322	968.5537	UTM 30	m	0
		0.0006	0.0004	0.0006			
NEO	11	4487757.4783	492605.2799	969.5915	UTM 30	m	0
		0.0006	0.0003	0.0006			
NEO	12	4487821.5791	492648.5084	967.9538	UTM 30	m	0
		0.0007	0.0005	0.0006			
NEO	13	4487766.9852	492660.3222	967.9309	UTM 30	m	0
		0.0008	0.0004	0.0006			
NEO 001	15	4487817.2794	492489.8846	969.3791	UTM 30	m	0
		0.0005	0.0006	0.0000			
NEO	16	4487658.7827	492497.9633	977.6469	UTM 30	m	0
		0.0004	0.0004	0.0006			
NEO	17	4487697.2083	492572.5633	970.1479	UTM 30	m	0
		0.0005	0.0003	0.0006			
NEO	18	4487733.0722	492387.1539	970.8888	UTM 30	m	0
		0.0005	0.0003	0.0006			
NEO	19	4487672.0639	492396.8813	970.6162	UTM 30	m	0
		0.0005	0.0004	0.0006			-
NEO	2	4487666.4832	492527.6756	968.6584	UTM 30	m	0
	-	0.0004	0.0004	0.0006			-
NEO	20	4487665.3973	492326.8211	969.6754	UTM 30	m	0
		0.0007	0.0004	0.0006			-
NEO	21	4487726,9129	492338.2674	970.5053	UTM 30	m	0
		0.0006	0.0003	0.0006			
NEO	22	4487771.7278	492347.6193	970.3210	UTM 30	m	0
		0.0006	0.0004	0.0006			
NEO	23	4487698.7820	492436.5246	970.4586	UTM 30	m	0
		0.0004	0.0003	0.0006			-
NEO	3	4487682.3635	492478.2423	969.2368	UTM 30	m	0
	-	0.0004	0.0003	0.0006			
NEO	4	4487706.1923	492516.4230	969.7972	UTM 30	m	0
		0.0004	0.0003	0.0006			
NEO	5	4487730.0947	492476.1112	970.4555	UTM 30	m	0
		0.0004	0.0003	0.0006			
NEO	6	4487772.0994	492423.4710	970.1789	UTM 30	m	0
		0.0004	0.0003	0.0006			
NEO	7	4487758.3374	492545.1463	970.0898	UTM 30	m	0
		0.0004	0.0003	0.0006			
NEO	8	4487810.3012	492552.3371	968.0385	UTM 30	m	0
		0.0005	0.0004	0.0006	-		
NEO	9	4487844.2079	492549.0472	966.6877	UTM 30	m	0
		0.0004	0.0005	0.0006			
NEO	YEB1	4487693.0770	492356.8665	975.4967	UTM 30	m	0
		0.0006	0.0004	0.0006			

Coordenadas de Longitud, Latitud, altura:

CODE FFF	STATION			LATITUDE STD DEV				LONGITUDE STD DEV	ELIP-HEIGHT STD DEV		
PLH	1	N	40 31	23.739004	W	3	5	19.499321	967.7174	m	0
PLH	10	N	40 31	28.536377	W	3	5	14.065228	968.5537	m	0
				0.0006			_	0.0004	0.0006		_
PLH	11	N	10 31	27.696780	W	3	5	14.159829	969.5915	m	0
				0.0006		~	-	0.0003	0.0006		
PLH	12	N	10 31	29.776269	W	3	5	12.3259/5	967.9538	m	0
DTH	10	17	10 91	0.0007		2	-	0.0005	0.0006	_	•
PLH	13	N	10 31	28.006/49	W	3	5	11.821/88	967.9309	m	0
DT N 001	15	17		0.0008		2	-	10 064866	0.0006	_	•
PLH 001	15	IN .	10 31	29.031/03	w	3	5	19.004866	969.3791	m	0
DTH	16	N	10 21	24 402667	T-T	2		10 714000	0.0000	-	0
FLII	10	10 1	10 31	0 0004	w	5	5	0 0004	9/7.0409	m	0
DTH	17	N 4	10 31	25 741817	TAT.	3	5	15 547223	970 1479	-	0
1 111	17	14	10 51	0 0005		5	5	0 0003	0,0006		
PT.H	18	N 4	40 31	26 898451	W	3	5	23 425700	970 8888	m	0
1 111	10	14	10 51	0 0005		5	5	0 0003	0.0006		
PT.H	19	N 4	40 31	24,920922	W	3	5	23.009801	970.6162	m	0
				0.0005		-		0.0004	0.0006		
PT.H	2	N 4	40 31	24.744277	W	3	5	17.452926	968.6584	m	0
	-	-		0.0004		-		0.0004	0.0006		
PLH	20	N 4	10 31	24.702474	W	3	5	25,985935	969.6754	m	0
				0.0007				0.0004	0.0006		
PLH	21	N 4	40 31	26.697151	W	3	5	25.502331	970.5053	m	0
				0.0006				0.0003	0.0006		
PLH	22	N 4	40 31	28.150331	W	3	5	25.106974	970.3210	m	0
				0.0006				0.0004	0.0006		
PLH	23	N 4	10 31	25.788410	W	3	5	21.326754	970.4586	m	0
				0.0004				0.0003	0.0006		
PLH	3	N f	40 31	25.257499	W	3	5	19.553717	969.2368	m	0
				0.0004				0.0003	0.0006		
PLH	4	N 4	40 31	26.031256	W	3	5	17.932668	969.7972	m	0
				0.0004				0.0003	0.0006		
PLH	5	N 4	10 31	26.804843	W	3	5	19.646295	970.4555	m	0
				0.0004				0.0003	0.0006		
PLH	6	N 4	10 31	28.164884	W	3	5	21.884479	970.1789	m	0
				0.0004				0.0003	0.0006		
PLH	7	N 4	40 31	27.722694	W	3	5	16.714598	970.0898	m	0
	-			0.0004				0.0003	0.0006		
PLH	8	N 4	10 31	29.407559	W	3	5	16.411301	968.0385	m	0
	_			0.0005		_	_	0.0004	0.0006		
PLH	9	N 4	10 31	30.506686	W	3	5	16.552510	966.6877	m	0
	VED4			0.0004		~	-	0.0005	0.0006		-
PLH	YEB1	N 4	10 31	25.600830	W	3	5	24.710694	975.4967	m	0
				0.0006				0.0004	0.0006		

Coordenadas globales: X, Y y Z:

		X-COORDINATE	Y-COORDINATE	Z-COORDINATE	
CODE FFF	STATION	STD DEV	STD DEV	STD DEV	
XYZ	1	4848838.4733	-261648.8392	4122952.4484	m
		0.0005	0.0004	0.0004	
XYZ	10	4848749.9732	-261515.9505	4123065.4926	m
		0.0006	0.0004	0.0006	
XYZ	11	4848767.4469	-261519.1232	4123046.4781	m
		0.0006	0.0003	0.0006	
XYZ	12	4848726.9041	-261473.7022	4123094.1785	m
		0.0007	0.0005	0.0006	
XYZ	13	4848762.9460	-261463.7592	4123052.6680	m
		0.0007	0.0004	0.0007	
XYZ 001	15	4848722.3333	-261632.3296	4123091.7159	m
		0.0003	0.0006	0.0004	
XYZ	16	4848831.8998	-261629.9905	4122976.5976	m
		0.0006	0.0004	0.0005	
XYZ	17	4848805.2416	-261553.8709	4123000.9949	m
		0.0006	0.0004	0.0005	
XYZ	18	4848772.6585	-261737.8560	4123028.5999	m
		0.0006	0.0003	0.0005	
XYZ	19	4848812.5623	-261730.2047	4122982.0487	m
		0.0006	0.0004	0.0005	
XYZ	2	4848821.6614	-261599.6858	4122976.6342	m
		0.0006	0.0004	0.0005	
XYZ	20	4848812.4438	-261800.3643	4122976.3147	m
		0.0007	0.0004	0.0006	
XYZ	21	4848773.7613	-261786.8743	4123023.6302	m
		0.0006	0.0003	0.0006	
XYZ	22	4848745.0355	-261776.0025	4123057.5880	m
		0.0006	0.0004	0.0006	
XYZ	23	4848797.2142	-261689.6966	4123002.2894	m
		0.0006	0.0003	0.0004	
XYZ	3	4848809.1630	-261648.5400	4122989.0454	m
		0.0005	0.0003	0.0004	
XYZ	4	4848796.1568	-261609.6202	4123007.5545	m
		0.0005	0.0003	0.0004	
XYZ	5	4848778.9983	-261649.0949	4123026.1233	m
		0.0005	0.0003	0.0004	
XYZ	6	4848748.7255	-261700.2285	4123057.8370	m
		0.0006	0.0004	0.0005	
XYZ	7	4848764.0669	-261579.1718	4123047.4096	m
		0.0006	0.0003	0.0005	
XYZ	8	4848729.1690	-261570.1387	4123085.5872	m
		0.0006	0.0004	0.0005	
XYZ	9	4848705.9636	-261572.2159	4123110.4842	m
		0.0006	0.0005	0.0005	
XYZ	YEB1	4848800.4991	-261769.6541	4123001.1641	m
		0 0007	0 0004	0,0006	

Figura 8.1

9. TRANSFORMACIÓN DE LOS PUNTOS INVARIANTES AL SISTEMA DE LA RED LOCAL

Tanto el punto invariante del radiotelescopio de 13 metros, como el de 40 metros están dados en sus respectivos sistemas locales. Para transformar ambos puntos en el sistema de la red es necesario hacer transformaciones Helmert 3D de 7 parámetros, compuestas por tres traslaciones, tres giros y un factor de escala. De esta manera a partir de varios puntos dados en los dos sistemas (al menos tres), se puede transformar otro punto cualquiera de un sistema en el otro sistema. Para saber más acerca de la transformación Helmert 3D se hace referencia al informe técnico CDT 2017-5 "Desarrollo matemático para la realización de la transformación Helmert 3D", Córdoba, B., López-Ramasco, J.

Además dicha transformación nos ha permitido comparar, en el caso de los radio telescopios, los puntos invariantes calculados desde los distintos pilares. En estos casos los pilares los tenemos tanto en el sistema de la red como en el sistema local en el cual se hacen las medidas del punto invariante, ya que desde el estacionamiento se midió al menos a otros dos pilares.

Antena de 13 metros

Los puntos invariantes en el caso de la antena de 13 metros en el sistema de la red obtenidos de la transformación Helmert, se muestran en la Tabla 9.1:

	Punto invariante de la antena de 13 metros					
	X (m)	Y (m)	Z (m)			
Dentro de la cabina	4848831.4580± 0.0003	-261629.951531± 0.000017	4122976.2154± 0.0003			
Desde V1	4848831.4573± 0.0005	-261629.9503± 0.0006	4122976.2150± 0.0005			
Desde V2	4848831.4583± 0.0008	-261629.9509± 0.0006	4122976.2160± 0.0008			
Desde V3	4848831.4575± 0.0016	-261629.9518± 0.0007	4122976.2158± 0.0015			
Tabla 9.1						

Para calcular el punto invariante desde el exterior se realizó la media de los puntos obtenidos desde los tres vértices externos V1, V2 y V3 (Tabla 9.2).

	Punto invariante de la antena de 13 metros			
	X (m)	Y (m)	Z (m)	
Dentro de la cabina	4848831.4580± 0.0003	-261629.951531± 0.000017	4122976.2154± 0.0003	
MediaV1V2V3	4848831.4577±0.0005	-261629.9510±0.0008	4122976.2156±0.0005	
Diferencia interior- exterior de la cabina	0.0003	0.0005	0.0002	

Tab	la	9.2	
Tub	ıu	J.Z	

Estos datos reflejan una gran bondad en el ajuste utilizando las medidas hechas desde los tres pilares exteriores con el multi-prisma.

El punto invariante de la antena de 13 metros en el sistema Norte/Este/arriba se muestra en la Tabla 9.3.

Punto invariante de la antena de 13 metros			
Norte (m)	Este (m)	Arriba (m)	
4487658.7802 ± 0.0005	492497.9784 ± 0.0004	977.0611 ± 0.0006	
	Tabla 9.3		

Antena de 40 metros

Los puntos invariantes en el caso de la antena de 40 metros obtenidos en el sistema de la red a partir de la transformación Helmert, así como la media de los puntos desde los pilares V10, V12 y V13 se muestran en la Tabla 9.4.

Desv	0.001405798	0.00123	33682	0.0017	82417
Media	4848762.1759	0.0015 -261484.607	6 0.0011	4123084.7796	0.0014
	4848762.1760	0.0014 -261484.608	0.0005	4123084.7816	0.0014
	4848762.1773	0.0014 -261484.608	0.0009	4123084.7781	0.0012
	4848762.1745	0.0017 -261484.606	3 0.0018	4123084.7793	0.0016

Tabla 9.4

El punto invariante de la antena de 40 metros en el sistema local Norte/Este/arriba se muestra en la Tabla 9.3.

Punto invariante de la antena de 40 metros			
Norte (m)	Este (m)	Arriba (m)	
4487791.1813±0.0017	492639.4895±0.0013	989.065040±0.0016	
	Tabla 9.5		

10. INTEGRACIÓN EN LA RED DE LOS PUNTOS INVARIANTES

Una vez calculados los puntos invariantes de las distintas técnicas y la red ajustada, es necesario conectar dichos puntos con el resto de la red local. Esta labor se ha realizado con el software Geolab radiando las diferencias de distancias entre pilar y punto invariante (*DX*, *DY*, *DZ*), desde los pilares desde los cuales se han medido dichos puntos invariantes y cuyas coordenadas conocemos en el sistema de la red. Los puntos invariantes integrados en la red, así como su matriz de varianza covarianza se muestran en la Tabla 10.1.

* Variance factor used in computing covariance matrix = 0.837646

* Number of degrees of freedom of adjustment = 1973

* Number of stations in adjusted network = 26

* Number of stations extracted = 4

3DC							
XYZ	YEB1	4848800.4990	-261769.	6541	4123001.1642	m	0
XYZ	VLBI13m	4848831.4575	-261629.	9515	4122976.2150	m	0
XYZ	VLBI40m	4848761.1057	-261484.	5498	4123083.8637	m	0
XYZ	YEBE	4848724.9846	-261632.	4726	4123093.9855	m	0
COV	CT UPPR						
ELEM	3.99347247211	8e-07 -9.51725854	4742522e-09	4.17264625	705834e-08		
ELEM	2.6688354142605	6e-07 -2.89464611	1492639e-08	1.06787188	204765e-07		
ELEM	2.327763999670	9e-07 -4.57774774	4891867e-08	1.42023931	984808e-07		
ELEM	2.5700821549893	5e-07 -5.48314323	7832216e-08	1.15282902	138849e-07		
ELEM	1.7117162933670	4e-07 -2.1578396	6820946e-08	8.72987266	634911e-09		
ELEM	8.9888804984904	4e-08 -4.20107210	0488759e-08	-3.88190596	027844e-08		
ELEM	6.2977190449135	4e-08 1.11781780	0791301e-08	-2.97486848	715937e-08		
ELEM	6.1761491669905	5e-08 6.24485433	3586736e-11				
ELEM	3.0502334068873	5e-07 1.11830130	6657439e-07	8.03138619	043812e-10		
ELEM	1.5467809711363	8e-07 1.36758704	4935209e-07	1.79926609	104206e-08		
ELEM	1.1652679183054	1e-07 1.1207987	5364704e-07	2.61055288	158846e-08		
ELEM	1.484547729959	3e-07					
ELEM	3.5258077240696	2e-07 -3.44093214	4486275e-08	9.37015910	119964e-08		
ELEM	2.7356738481743	4e-07 -2.20481130	0429859e-08	9.29123934	732825e-08		
ELEM	2.7155492458616	4e-07 -2.20654370	0267516e-08	9.60328454	319934e-08		
ELEM	1.8021665567512	8e-07 9.87379041	7717895e-09	-5.74324448	747825e-08		
ELEM	5.1630379197545	7e-08 3.3779556	6397987e-08	-3.69491101	988211e-08		
ELEM	4.5524560938081	5e-08 9.07116343	3806813e-09				
ELEM	2.4684050964300	7e-07 8.83304401	1845598e-08	-1.02782854	716805e-08		
ELEM	1.7580166725480	2e-07 9.35444410	0112769e-08	-1.29272570	209421e-08		
ELEM	1.706663450203	5e-07					
ELEM	1.985063331947	4e-06 -8.95861749	9466694e-10	4.6463751	965707e-08		
ELEM	2.9285007011487	7e-07 -1.5873604	4458893e-08	8.45937013	703053e-08		
ELEM	1.5387957573772	2e-06 -3.29336698	8041528e-08	8.1252814	220882e-09		
ELEM	1.056284094981	9e-07 -4.58503924	4289817e-08				
ELEM	3.2814601079994	5e-06 8.4998284	4875881e-08	-1.56405258	440173e-08		
ELEM	1.9455653261350	7e-07					
ELEM	3.1919145147902	6e-07 -1.4945361(6811136e-08	9.31787343	418988e-08		
ELEM	1.8856853824546	7e-07 -1.86352689	9532608e-08				
ELEM	2.377164266964	5e-07					

* Number	of degrees of free	dom of adjustment :	= 2044			
* Number	of stations in adj	justed network = 27				
* Number	of stations extrac	ted = 4				
*						
3DC						
XYZ	VLBI40m	4848762.175895	-261484.	607603	4123084.779600 m	0
XYZ	VLBI13m	4848831.457742	-261629.	951571	4122976.215159 m	0
XYZ	YEBE	4848724.984533	-261632.	472188	4123093.985476 m	0
XYZ	YEB1	4848800.499013	-261769.	654085	4123001.164204 m	0
COV CT	UPPR					
ELEM	2.04995928339998e-	-06 7.1628350002	3397e-09	3.14521	96037248e-08	
ELEM	2.81335704572559e-	-07 -6.9152540803	9266e-08	8.757531	67791391e-08	
ELEM	3.05526699759183e-	-07 1.6951698053	3409e-08	8.179646	590560368e-08	
ELEM	2.24703679820563e-	-07 -4.4324927395	0196e-08	1.542690)74606231e-07	
ELEM	1.36727295139055e-	-06 -4.2229092181	7372e-08	-2.195293	302138495e-08	
ELEM	4.74386940699216e-	-08 -1.2016043042	9116e-08	-1.343241	25046242e-08	
ELEM	1.12748587668803e-	-07 -1.8785807553	0456e-08	-5.404085	39776911e-08	
ELEM	6.22848744968344e-	-08 2.594440920	3196e-08			
ELEM	3.06137011901663e-	-06 9.376848857	4705e-08	4.544123	340251479e-08	
ELEM	1.82919763040765e-	-07 8.0965803922	2677e-08	-5.576057	744271311e-08	
ELEM	2.04800468550067e-	-07 1.5961710064	9855e-07	1.628268	07095491e-08	
ELEM	1.04283238378311e-	-07				
ELEM	3.78593428284535e-	-07 -3.6109098630	8904e-08	9.570926	526539788e-08	
ELEM	2.78464367188601e-	-07 -4.1402867355	9747e-08	9.479621	29978466e-08	
ELEM	2.72281713474728e-	-07 1.7877780015	7107e-08	1.170350)42106254e-07	
ELEM	2.02816254020516e-	-07 1.1992618656	6851e-08	-2.188615	82964578e-08	
ELEM	4.10368754150812e-	-08 -1.4825694985	8608e-08	-3.010587	28796443e-08	
ELEM	9.51458726324386e-	-08 1.7237691406	2188e-09			
ELEM	2.6869471449628e-	-07 9.7899206297	6158e-08	1.273581	19889668e-08	
ELEM	1.75699736776599e-	-07 1.1052480175	7909e-07	-5.244315	62104514e-08	
ELEM	1.55897878476783e-	-07				
ELEM	4.06079916628841e-	-07 -1.2148576377	5982e-08	9.360842	279825302e-08	
ELEM	2.58421692040105e-	-07 -3.2042160737	4693e-08	1.196831	10070407e-07	
ELEM	2.31255716722584e-	-07 -2.2059705819	7717e-08	-6.389795	87785491e-08	
ELEM	6.1043292203574e-	-08 3.4871359317	9878e-08			
ELEM	2.7956390285999e-	-07 1.2260332442	1109e-07	1.604710	573280528e-09	
ELEM	1.47220120120083e-	-07				
ELEM	4.18854466536725e-	-07 -6.0635803683	2281e-09	3.0250	26384487e-08	
ELEM	1.73967777537483e-	-07 -2.600374501	5791e-08			
ELEM	3.23591473262172e-	-07				
*						
* End of	extracted coordina	ates				

*

Tabla 10.1

11. TRANSFORMACIÓN DE COORDENADAS DEL SISTEMA DE LA RED LOCAL AL SISTEMA GLOBAL IG**b**08

En último lugar es necesario transformar los puntos invariantes del sistema de la red a un sistema global internacional. En nuestro caso los transformaremos al sistema internacional IGb08. Con este propósito se han tomado los datos de tres estaciones GNSS midiendo de forma permanente situadas en el recinto del Observatorio con el fin de poder realizar una transformación Helmert de 7 parámetros. Las estaciones usadas han sido YEBE, YEB1 y una antena GNSS situado en el Pilar 17 del que se tiene una serie lo suficientemente larga de datos para poder llevar a cabo esta tarea. A través de estos datos se han calculado con BERNESE coordenadas en el sistema IGb08 de estos tres puntos utilizando líneas base con estaciones de todo el mundo para alcanzar suficiente precisión. Teniendo en cuenta que también conocemos las coordenadas de estos tres puntos en el sistema de la red podemos obtener los parámetros de la transformación Helmert entre ambos sistemas, para lo cual se ha fijado el factor de escala a 1, ya que en la transformación no debería haber distorsiones en las distancias.

Las coordenadas procesadas con Bernesse para YEBE, YEB1 y el Pilar 17 en el sistema IGb08 se muestran en la Tabla 11.1, mientras que las coordenadas en el sistema local se muestran en la Tabla 11.2.

Estación	X (IGb08)	Y(IGb08)	Z(IGb08)		
Pilar 17	4848804.8459±0.0009	-261553.3745±0.0006	4123001.3083±0.0012		
GNSS YEB1	4848800.0727±0.0011	-261769.1554±0.0004	4123001.4531±0.0017		
GNSS YEBE	4848724.5962±0.0007	-261631.9794±0.0003	4123094.3037±0.0008		
Tabla 11.1					

V (Lesel)	

Estación	X (Local)	Y (Local)	Z (Local)
Pilar 17	4848805.241667±0.0006	-261553.870961±0.0003	4123000.994858±0.0005
GNSS YEB1	4848800.453498±0.0006	-261769.651635±0.0004	4123001.125186±0.0006
GNSS YEBE	4848724.984574±0.0006	-261632.472593±0.0004	4123093.985536±0.0005
		Tabla 11.2	

Los puntos invariantes que queremos transformar vienen dados en la Tabla 11.3.

Estación	X (Local)	Y (Local)	Z (Local)		
YEB1	4848800.4991±0.0007	-261769.6541±0.0004	4123001.1641±0.0006		
VLBI13m	4848831.4580± 0.0003	-261629.951531± 0.000017	4122976.2154± 0.0003		
VLBI40m	4848762.17589± 0.0014	-261484.607603 ± 0.0012	4123084.7796±0.0018		
YEBE	4848724.9845 ± 0.0004	-261632.4726 ± 0.0006	4123093.9855±0.0005		

Tabla 11.3

Los parámetros de la transformación en el sistema IGb08 se encuentran en la Tabla 11.4

S:	1.000000	sigma	0.000000		
Girol(°):	359.997420	sigma(°)	0.000767	sigma(")	2.760278
Giro2(°):	0.000714	sigma(°)	0.001120	sigma(")	4.030657
Giro3(°):	0.004569	sigma(°)	0.000745	sigma(")	2.683528
Tx (m) :	-0.388313	sigma(m)	0.001169		
Ty(m):	0.495296	sigma(m)	0.000661		
Tz(m):	0.319840	sigma(m)	0.001366		

12. RESUMEN DE LOS PUNTOS INVARIANTES CALCULADOS. FORMATO SINEX.

En la Tabla 12.1 y 12.2 se muestran los resultados de los puntos invariantes de las cuatro técnicas espaciales y su matriz de varianza covarianza en el sistema IGb08.

Pilar	х	SX	Y	SY	Z	SZ
YEB1	4848800.120060	0.000632	-261769.158390	0.000414	4123001.488133	0.000552
VLBI13m	4848831.067509	0.000594	-261629.454477	0.000425	4122976.532356	0.000497
VLBI40m	4848761.775169	0.001409	-261484.111184	0.001240	4123085.091274	0.001811
YEBE	4848724.595679	0.000565	-261631.978731	0.000434	4123094.304297	0.000488

La Matriz de Varianzas Covariansas

	0.0000000990	-0.0000000095	0.000000417	0.0000005664	-0.0000000888	0.0000000000	0.0000002320	-0.0000000408	0.0000001420	0.000002570	-0.0000000040	0.0000001120
	0.0000000095	0.0000001712	0.000000216	0.0000000657	0.000000895	0.0000000120	0.000000388	0.0000000630	0.0000000112	0.000000297	0.000000618	0.0000000001
	0.0000000417	-0.0000000216	0.0000003050	0.0000001118	80000000008	0.0000001547	0.000001368	0.000000180	0.0000001165	0.0000001121	0.0000000261	0.0000001485
	0.0000002669	0.0000000007	0.0000001118	0.0000003526	-0.0000000044	0.0000000937	0.0000002726	-0.000000220	0.000000929	0.0000002716	-0.0000000220	0.0000000960
	0.000000289	0.000000899	0.0000000008	0.000000344	0.0000001802	0.000000099	0.000000574	0.0000000516	0.000000338	0.000000369	0.000000455	0.000000091
	0.0000001068	-0.000000420	0.0000001547	0.000000937	0.000000099	0.0000002468	0.000000883	-0.0000000103	0.0000001758	0.000000935	-0.000000129	0.0000001707
	0.000002328	-0.000000388	0.0000001368	0.0000002736	-0.000000574	0.000000689	0.0000019851	-0.000000009	0.000000465	0.000002929	-0.0000000159	0.000000846
-	0.0000000650	0.0000000630	0.000000100	-0.000000220	0.0000000516	-0.0000000103	-0.0000000009	0.0000015308	-0.0000000329	0.000000000	0.0000001056	-0.000000450
	0.0000001420	0.000000112	0.0000001165	0.0000000529	0.000000338	0.0000001758	0.000000165	0.000000329	0.0000032815	0.000000850	0.0000000156	0.000001946
	0.0000002570	-0.000000297	0.0000001121	0.0000002716	-0.000000869	0.0000000935	0.000002929	0.000000081	0.000000850	0.000003192	-0.000000149	0.000000932
-	0.000000548	0.000000618	0.000000261	-0.0000000220	0.000000455	-0.0000000129	-0.000000159	0.0000001056	-0.000000156	-0.0000000149	0.0000001886	-0.000000186
	0.000000150	0.0000000001	0.0000001405	0.000000960	0.00000000091	0.0000001707	0.0000000846	-0.0000000458	0.0000001546	0.000000932	-0.0000000186	0.0000002377

Tabla 12.2

Con el fin de enviar los datos resumidos al IERS (International Earth Rotation and Reference Systems Service) y contribuir al ITRF (International Terrestrial Reference Frame) se ha generado un fichero con formato SINEX en la que se resume toda la información de las cuatro técnicas espaciales, así como su matriz de varianzas covarianzas (Tabla 12.3).

```
$=SNX 2.02 IGN 18:338:38900 IGN 16:063:00000 16:313:00000 C 00012 2 X
+FILE/COMMENT
* File created by software tosinex (J.López-Ramasco)*
* Matrix scalling Factor used 1.0000000
-FILE/COMMENT
+SITE/ID
+CODE PT
         _DOMES__ T _STATION DESCRIPTION__ APPROX_LON_ APPROX_LAT__APP_H_
YEB1 A 13420M002 13420M002
7389 A 134205003 134205003
7386 A 134205002 134205002
                                           -3 5 24.7 40 31 25.6 975.4
                                           -3 5 18.7 40 31 24.5
                                                                    977.1
                                           -3 5 12.7 40 31 28.8 987.7
YEBE & 13420M001 13420M001
                                           -3 5 19.1 40 31 29.6 972.8
-SITE/ID
+SOLUTION/EPOCHS
*Code PT SOLN T Data_start_ Data_end____ Mean_epoch_
-SOLUTION/EPOCHS
+SOLUTION/ESTIMATE
*INDEX TYPE__ CODE PT SOLN _REF_EPOCH__ UNIT S _
                                               _ESTIMATED VALUE_
                                                                    STD DEV
             YEB1 A 1 16:313:00000 m 2 0.484880012006000E+07 0.60000E-03
    1 STAX
                                          2 -.261769158390000E+06 0.40000E-03
    2 STAY YEB1 A
                        1 16:313:00000 m
    3 STAZ
             YEB1 A
                       1 16:313:00000 m
                                           2 0.412300148813000E+07 0.50000E-03
                     1 16:313:00000 m 2 0.484883106750900E+07 0.60000E-03
    4 STAX 7389 A
    5 STAY
             7389 A
                       1 16:313:00000 m
                                           2 -. 261629454480000E+06 0.40000E-03
                      1 16:313:00000 m
    6 STAZ 7389 A
                                          2 0.412297653236000E+07 0.50000E-03
                      1 16:313:00000 m
    7 STAX 7386 A
                                          2 0.484876177517000E+07 0.14000E-02
                       1 16:313:00000 m
    8 STAY
             7386 A
                                           2 -. 261484111180000E+06 0.12000E-02
    9 STAZ 7386 A 1 16:313:00000 m
                                          2 0.412308509127400E+07 0.18000E-02
   10 STAX
             YEBE A
                       1 16:313:00000 m
                                           2 0.484872459568000E+07 0.60000E-03
   11 STAY YEBE A 1 16:313:00000 m
                                          2 -.261631978730000E+06 0.40000E-03
   12 STAZ YEBE A 1 16:313:00000 m 2 0.412309430430000E+07 0.50000E-03
-SOLUTION/ESTIMATE
+SOLUTION/MATRIX_ESTIMATE L COVA
*PARA1 PARA2
               PARA2+0
                                     PARA2+1
                                                           PARA2+2
        1 0.399349803703331E-06
    1
          1 -.949745450350327E-08 0.171168170090582E-06
    2
         1 0.417274350354161E-07 -.215689230528934E-07 0.305024243443326E-06
          1 0.266887877232670E-06 0.874849816854087E-08 0.111828279764368E-06
     4
     4
          4 0.352588594421265E-06
         1 -. 289275289064266E-07 0.898853392886134E-07 0.815333859514687E-09
    5
          4 -.343912345618522E-07 0.180212059664241E-06
    5
         1 0.106790441831226E-06 -.419993973828026E-07 0.154677227003315E-06
     6
          4 0.937010342333650E-07 0.988469098495230E-08 0.246837283639591E-06
     6
     7
         1 0.232786619031969E-06 -.387992217881363E-07 0.136757568192243E-06
          4 0.273575979860889E-06 -.574103490237298E-07 0.883326262985326E-07
     7
          7 0.198506463052522E-05
     7
         1 -.457573175913036E-07 0.629717610499311E-07 0.180065474574056E-07
    8
          4 -. 220263602003546E-07 0.516251025170187E-07 -. 102653756262653E-07
    8
    я
          7 -.858595548644221E-09 0.153879265490230E-05
          1 0.142023651941708E-06 0.111923977407388E-07 0.116522002164866E-06
    9
          4 0.929094731006245E-07 0.337932727295365E-07 0.175798348891874E-06
    9
         7 0.464825752863313E-07 -.328514736743445E-07 0.328146191189655E-05
    9
          1 0.257017792179926E-06 -.297280680062906E-07 0.112077779211696E-06
   10
   10
          4 0.271561991649125E-06 -.369267612678623E-07 0.935458769524691E-07
          7 0.292852800646143E-06 0.814346611391874E-08 0.849979398535071E-07
   10
   10
         10 0.319196156852729E-06
         1 -.548103469417231E-07 0.617559283912244E-07 0.261190530388072E-07
   11
          4 -. 220432503257474E-07 0. 455196841376532E-07 -. 129138875313923E-07
   11
          7 -.158550613047934E-07 0.105625024440226E-06 -.156295458436014E-07
   11
         10 -.149309820927718E-07 0.188564478045174E-06
   11
          1 0.115284012107174E-06 0.759156045327023E-10 0.148450759593621E-06
   12
          4 0.960318570406963E-07 0.908491678571333E-08 0.170664154757817E-06
   12
   12
          7 0.845968459108923E-07 -.458397437212257E-07 0.194557187140205E-06
         10 0.931798768480302E-07 -.186254396564993E-07 0.237715781523039E-06
   12
-SOLUTION/MATRIX_ESTIMATE L COVA
$ENDSNX
```

Tabla 12.3

13. CÁLCULO DEL LOCAL TIE A PARTIR DE LOS RESULTADOS OBTENIDOS

En último lugar se ha llevado a cabo el cálculo del local tie entre las diferentes técnicas geodésicas en el Observatorio. Para ello se ha calculado la distancia y su desviación estándar entre las distintas técnicas. A continuación exponemos el procedimiento seguido.

Sean (X_A, Y_A, Z_A) γ (X_B, Y_B, Z_B) dos estaciones distintas cualesquiera. La distancia entre dos puntos será:

$$d = \sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}$$

Si queremos saber la precisión con la que estamos calculando dicha distancia, será necesario usar la propagación de errores. Esta vendrá dada por:

$$\sigma_d^2 = \left(\frac{\partial d}{\partial X_A}\right)^2 \sigma_{XA}^2 + \left(\frac{\partial d}{\partial Y_A}\right)^2 \sigma_{YA}^2 + \left(\frac{\partial d}{\partial Z_A}\right)^2 \sigma_{ZA}^2 + \left(\frac{\partial d}{\partial X_B}\right)^2 \sigma_{XB}^2 + \left(\frac{\partial d}{\partial Y_B}\right)^2 \sigma_{YB}^2 + \left(\frac{\partial d}{\partial Z_B}\right)^2 \sigma_{ZB}^2$$

donde:

$$\begin{aligned} \frac{\partial d}{\partial X_A} &= \frac{-(X_B - X_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \\ \frac{\partial d}{\partial Y_A} &= \frac{-(Y_B - Y_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \\ \frac{\partial d}{\partial Z_A} &= \frac{-(Z_B - Z_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \\ \frac{\partial d}{\partial X_B} &= \frac{(X_B - X_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \\ \frac{\partial d}{\partial Y_B} &= \frac{(Y_B - Y_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \\ \frac{\partial d}{\partial Z_B} &= \frac{(Z_B - Z_A)}{\sqrt{(X_B - X_A)^2 + (Y_B - Y_A)^2 + (Z_B - Z_A)^2}} \end{aligned}$$

14. CONCLUSIONES

En este informe se presentan por primera vez los resultados del local tie entre las distintas técnicas espaciales situadas en el Observatorio de Yebes alcanzando precisiones en torno a 1 mm, de acuerdo con las especificaciones de GGOS. Este cometido ha sido posible gracias a un minucioso trabajo de observación con centrado forzoso, repetibilidad en las medidas y automatización robótica de las medidas con a la ayuda de instrumentación de alta precisión como la estación total Leica TS que nos ha permitido medir ángulos y distancias con precisiones de 0.5" y 0.6mm +1 ppm respectivamente. El disponer de un pilar central en el radiotelescopio de 13 metros también ha favorecido la mejora de la precisión del punto invariante de dicha técnica. Sería aconsejable que todos los radiotelescopios construidos con fines geodésicos disfrutaran de este pilar que permite observar el propio movimiento del radiotelescopio desde el interior de la cabina de una sola vez, y evitar tener que observar dicho movimiento desde al menos tres pilares exteriores.

Sin embargo el hecho de no haber sido posible la sustitución por un prisma en la antena YEBE para medir su punto invariante, como si se hizo para medir YEB1, ha impedido obtener la posición del punto con una precisión similar al de YEB1. La precisión altimétrica que hemos obtenido con la nivelación trigonométrica es bastante alta pero aún así se hace necesario realizar una nivelación geométrica para mejorar las alturas aunque no se espera una gran diferencia.

Durante estos trabajos también se ha convalidado el uso del multi-prisma fabricado en el observatorio con el que medir los puntos invariantes de los radiotelescopios de 13 y 40 metros desde los pilares exteriores, llegando a la conclusión de que permite obtener altas precisiones, del orden del mm, además de ahorrar una gran cantidad de recursos de tiempo y material ya que se pueden observar desde muchas posiciones sin necesidad de recubrir la antena con varios prismas orientados en distintas direcciones.

Las soluciones de los puntos invariantes de los radiotelescopios calculadas con software de elaboración propia han sido comparados con el programa axis 1.07 utilizado por la comunidad científica llegando a la conclusión de que las diferencias entre ambos resultados están por debajo de la precisión con la que están calculados los puntos, por lo que queda convalidado su utilización.

15. REFERENCIAS

Camacho,A.G., Martín,M.D., 1986. "Constreñimientos internos en la compensación de estaciones," 13, 42-46.

Córdoba,B., López-Ramasco,J., 2017, "Actualización del cálculo del punto invariante de un radiotelescopio. Método de ajuste clásico por círculos. Nuevas medidas en el radiotelescopio RAEGE del Observatorio de Yebes". Informe Técnico CDT 2017-2.

Córdoba,B., López-Ramasco,J., 2017, "Estudio planimétrico de la viabilidad y diseño de la red geodésica de pilares en el Centro de Desarrollos Tecnológicos de Yebes". Informe Técnico CDT 2017-3.

Córdoba,B., López-Ramasco,J., 2017, "Desarrollo matemático para la realización de la transformación Helmert 3D". Informe Técnico CDT 2017-4.

Dawson, J., Sardi, P., Johnston, G.M., Vittuari, L., 2007. "Indirect approach to invariant point determination for SLR and VLBI systems: an assessment", J. Geody. 81, 433-441.

Fancher, K., Smith, D., Breidenbach, S., Olsen, J., Paudel, N, 2010. "Recent IERS Site Survey of Multiple Co-located Geodetic Techniques by NGS", FIG Congress 2010, Facing the challenges-Building the Capacity.

Ghilani, C.D., 2010. "Adjustment computation spatial data analysis."

Henneberg, H., 1986. "Redes geodésicas de alta precisión. III Curso de Geodesia Superior," 2. 123-196.

Linkwitz, H., 1986. "Compensación de grandes redes geodésicas. III Curso de Geodesia Superior," 2, 72-121.

Martín, F., 1990." Geodesia y cartografía matemática."

Santamaría-Gómez, A., García-Espada, S., 2011. "Simulating the estimation of the 40m radiotelescope Invariant Reference Point at the Yebes observatory". Informe Técnico IT-OAN 2011-9.

Sevilla, M.J., 1986. "Formulación de modelos matemáticos en la compensación de redes geodésicas", III Curso de Geodesia superior, 2, 2-69.

Sevilla, M.J., 1987. "Colocación Mínimos Cuadrados", IV Curso de Geodesia Superior, 2, 97-141.

Sevilla, M.J., 2003. "Ajuste con Constreñimientos", Seminario de Geodesia Superior.

Sevilla, M.J., 2005. "Ajuste de redes libres. Modelos matemáticos singulares".

Starti, P., Sillard, P., Vittuari, L., 2004 "Surveying co-located space-geodetic instrument for ITRF computation", Journal of Geodesy, 78, 210-222.