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1 Introduction 

1.1 Motivation 

The development of increasingly large and complex engineering infrastructures 
requires precise knowledge of the characteristics of the integrating components and 
subsystems. Modern radio astronomy antennas are not an exception. Radio waves 
captured by the parabola are progressively amplified, transformed and processed by 
different subsystems, and the electrical characterization of each module is of great 
importance. 

In a radio telescope, the incoming signal is redirected and transformed by a series of 
optical components, such as reflectors, mirrors or lenses. The purpose is to optimally 
couple the beam to the different feeds at their respective frequencies. At high 
frequencies, above some tens of GHz, free-space methods allow straightforward 
characterization of such optical devices. These free-space measurement systems have 
been extensively proposed to characterize dielectric materials. In radio astronomy, 
typical examples of dielectric-based components are the membrane in the vertex of 
the parabola that protects the receiver cabin from the rain, or the vacuum windows in 
a cryostat housing the cryogenic low-noise amplifiers. Nevertheless, its use is not 
restricted only to dielectric materials, but can be extended to measure the 
transmission/reflection response of any planar quasioptical device. 

This document presents the design and implementation of a quasioptical test-bench, 
for free-space characterization of materials and components at W-band (75-110 GHz). 
This structure allows −in a modular, controlled and stable manner− the assembly, 
alignment and operation of a high-frequency transmitting/receiving setup. This is of 
particular interest in the case of free-space propagation, where different parts of the 
system are not physically connected. A brief description of the dielectric parameters 
and the different characterization techniques is outlined below. The electrical design 
of the measurement system, based on the quasioptical theory, is detailed in Section 2. 
The description of the system assembly, including both mechanical and electrical 
aspects, as well as the existing methods for free-space calibration, is outlined in 
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Section 3. The main extraction algorithms used to compute the dielectric properties 
from the measured scattering (S-) parameters are described in Section 4. Some 
experimental results to illustrate the functionality of the implemented system are 
presented in Section 5. Finally, the main conclusions are discussed in Section 6. 

1.2 Dielectric materials 

The term dielectric refers to materials with practically null electrical conductivity. Its 
electrical behavior is characterized by means of a parameter known as electrical 
permittivity (𝜀) or dielectric constant, which is a measure of how an electric field 
affects, and is affected by, the dielectric medium. The electrical permittivity is 
expressed as a complex quantity, in which the real part is related with the energy that 
can be stored by the material, and the imaginary part is related with its losses. 

In practice, the permittivity of a homogeneous material is usually given relative to the 
vacuum permittivity (i.e., 𝜀0 = 8.85 ⋅ 10−12 F/m), and this normalized parameter is 
commonly denoted as relative permittivity 

𝜀𝑅 =
𝜀
𝜀0

= 𝜀𝑅′ − 𝑗𝜀𝑅′′. (1.1) 

In low-loss materials, the imaginary part (𝜀𝑅′′) is much lower than the real part (𝜀𝑅′ ). If 
the complex relative permittivity 𝜀𝑅 is represented as a vector, decomposing the real 
and imaginary components, the sum vector describes an angle 𝛿 with the real axis (Fig. 
1.1). Thereby, the ratio between the imaginary part of the permittivity and the real 
part is defined as loss tangent, tan(𝛿) or dissipation factor 

tan(𝛿) =
𝜀𝑅′′

𝜀𝑅′
. (1.2) 

Just as the electrical permittivity determines the interaction between a material and 
an electric field, it can be defined a parameter called magnetic permeability (𝜇) to 
describe the mutual influence between the material and a magnetic field. In the same 
way, the relative permeability 𝜇𝑅 is determined relative to that in the vacuum (i.e., 
𝜇0 = 4π ⋅ 10−7 H/m). In our case, most of the materials of interest are non-magnetic 
and give permeability close to one (𝜇𝑅 ≅ 1), so the analysis will primarily be focused 
on determining the electrical permittivity. 

 
Fig. 1.1: Loss tangent definition.  
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1.3 Measurement techniques 

The experimental characterization of dielectric material properties is usually carried 
out using indirect methods, analyzing the alterations of the electrical response in a 
measurement setup when the material-under-test (MUT) is introduced in the system. 
Therefore, if the theoretical mechanisms in the system are known, it is possible to 
compare its response with and without the sample, to finally extract its electrical 
parameters. Following this principle, different techniques have been proposed based 
on measurements at microwave or millimeter-wave frequencies [1]. They are 
commonly classified into four groups: coaxial probes, transmission lines, resonant 
cavities and free-space setups. 

1.3.1 Coaxial probes 

This method uses the open edge of a coaxial transmission line (probe), which is either 
immersed into a liquid medium or placed on the surface of a (semi-)solid material [2]. 
The measured reflection coefficient allows determining the alteration suffered by the 
fields at the end of the probe due to the presence of the material, and therefore 
extracting its permittivity. This method is simple, broadband and non-destructive, and 
is mainly indicated for (lossy) liquids or semi-solids. For solids, the presence of an air 
gap between the sample and the probe strongly degrades its performance. 

1.3.2 Transmission lines 

In this case, a sample is placed inside a section of a waveguide or a coaxial 
transmission line, and the reflection and transmission coefficients are measured [3]. 
Both the electrical permittivity and magnetic permeability can be extracted in a broad 
range of frequencies. In general, the sample is machined to present flat faces 
perpendicular to the line axis, and should fill the whole cross section, avoiding the 
presence of air gaps at fixture walls. 

1.3.3 Resonant cavities 

A resonant cavity is a closed structure, which reinforces the fields to form standing 
waves at a very specific resonant frequency. A piece of material inside the cavity alters 
both its resonant frequency and the quality factor, which gives information to extract 
its intrinsic electrical properties [4]. In this case, the measurement is limited to a single 
frequency, but the method provides improved accuracy with low loss or very thin 
sheet materials, compared with broadband techniques. 

1.3.4 Free space 

This setup uses two antennas, faced each other, and a flat slab or sheet of material 
placed in the middle (Fig. 1.2). The variation of the reflecting and transmitting signals 
allows determining the electrical permittivity and the magnetic permeability of the 
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material [5]. Actually, the principle of operation is equivalent to the transmission line, 
but using free-space signals instead of fields confined in a line. It provides easier 
characterization at very high frequencies (up to hundreds of GHz), since the sample 
does not need to be machined to fit the reduced dimensions of a transmission line or a 
cavity at so high frequencies. Furthermore, the method is broadband and non-
contacting. It requires a large, homogeneous, flat and parallel-faced sample. In 
addition, since the setup is connector-less, it requires an ad-hoc free-space calibration 
kit. 

 
Fig. 1.2: Free-space measurement setup.  

Table 1.1: Measurement techniques for dielectric characterization. 

Method Coaxial probe Transmission line Resonant cavity Free space 

Features Broadband,  
non-destructive Broadband Single-frequency,  

accurate 
Broadband, 

non-contacting 

Material 
assumptions 

Semi-infinite 
thickness,  

flat surface,  
best for liquids or 

semi-solids 

Solid sample fills 
transmission line 

cross-section, 
perpendicular flat 

faces 

Small samples, 
commonly thin 
sheets or rod-

shaped 

Large and flat 
parallel-faced 

samples 

Parameters 𝑠11 𝑠11, 𝑠21 𝑄-factor, 𝑓0 𝑠11, 𝑠21 

Frequency 
range (typ.) 0.2 – 50 GHz 50 MHz – 75 GHz 1 – 20 GHz 5 – 500 GHz 

Dielectric 
properties 𝜀𝑅 𝜀𝑅, 𝜇𝑅 𝜀𝑅, 𝜇𝑅 𝜀𝑅, 𝜇𝑅 

From all the techniques described above, this manuscript presents the development of 
a general-purpose measurement system based on the free-space technique, with an 
intended frequency range between 75 and 110 GHz (W band). The choice of the 
mentioned setup is essentially motivated by:  

(a) simpler setup and analysis at high frequencies, 
(b) many dielectrics used in radio astronomy systems, such as for the vacuum 

windows in the cryostats, are already flat slabs, so they can be directly 
measured in the system (non-destructive), 

(c) it can be used for the transmission/reflection characterization of other planar 
quasioptical components.  

 

 

Tx antenna Rx antenna

MUT
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2 Quasioptical design 

2.1 Quasioptical theory 

Quasioptics deals with the propagation of electromagnetic waves whose wavelength is 
comparable to the size of the optical components, and therefore the effect of 
diffraction becomes significant. In between conventional optics and microwaves, 
quasioptics presents a formalism to analyze the propagation of radiation based on 
Gaussian beam modes, which is of particular interest for the case of mm-wave and THz 
systems. Some of the main concepts are going to be described below. Nevertheless, an 
extensive analysis about quasioptical theory and applications can be found in [6].  

Let us consider a beam propagating in the positive 𝑧 direction. For radiation similar to 
that of a plane wave, but allowing some variation perpendicular to the axis of 
propagation, a solution for any component of the electric field can be written as 

𝐸(𝑥,𝑦, 𝑧) = 𝑢(𝑥,𝑦, 𝑧) exp(−𝑗𝑘𝑧), (2.1) 

where 𝑘 = 2𝜋/𝜆 is the wave number, 𝜆 is the wavelength, and 𝑢 is a complex scalar 
function that defines the non-plane wave part of the beam.  

The scalar field 𝑢 satisfies the Helmholtz equation. In the paraxial approximation, the 
radiation of the beam is highly collimated, parallel to the axis of propagation, and with 
some transverse variation. In that case, the Helmholtz equation in rectangular 
coordinates can be simplified as 

𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

− 2𝑗𝑘
𝜕𝑢
𝜕𝑧

= 0, (2.2) 

which is known as paraxial wave equation. Solutions to this equation are the Gaussian 
beam modes, on which the quasioptical theory is based. These can be expressed in the 
form of Gauss-Hermite polynomials in rectangular coordinates, or Gauss-Laguerre 
polynomials in cylindrical coordinates. 
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Regardless of the system of coordinates, the fundamental mode of the solution to the 
paraxial wave equation follows a fundamental Gaussian distribution. Let us define 
𝑧 = 0 as the location at which the beam radius has its minimum (beam waist). The 
fundamental Gaussian mode can be written as 

𝐸(𝑟, 𝑧) =
𝐴 𝜔0

𝜔(𝑧) ⋅ exp�−
𝑟2

𝜔(𝑧)2� ⋅ exp(−𝑗𝑘𝑧) ⋅ exp�−
𝑗𝜋𝑟2

𝜆𝑅(𝑧)� ⋅ exp�𝑗𝜙0(𝑧)�, (2.3) 

where 𝑟 is the distance perpendicular to the axis of propagation, 𝐴 is a normalization 
constant, 𝜔 is the beam radius, 𝜔0 is the waist radius, 𝑅 is the radius of curvature, and 
𝜙0 is the Gaussian beam phase shift. Regarding equation (2.3), the first term is for 
conservation of energy, the second term gives a Gaussian amplitude distribution, the 
third term is a plane wave delay, the fourth term denotes a spherical wave phase 
curvature, and the last one is a phase shift term. 

The propagation of a Gaussian beam, as well as the relevant beam parameters, is 
represented in Fig. 2.1. The beam radius 𝜔 is defined as the half-width value of the 
beam at which the field falls a factor 1/𝑒 (-8.7 dB) relative to the on-axis value. The 
beam radius is a function of 𝑧, and its minimum is the beam waist 𝜔0. When a 
Gaussian beam propagates, the field distribution remains Gaussian, but its beam 
radius changes as 

𝜔(𝑧) = 𝜔0�1 + �
𝑧
𝑧𝑐
�
2

, (2.4) 

where 

𝑧𝑐 = 𝜋𝜔0
2/𝜆, (2.5) 

is the confocal distance, sometimes called Rayleigh range, at which the radius of 
curvature is minimum. The radius of curvature also depends on 𝑧 as 

𝑅(𝑧) = 𝑧 �1 + �
𝑧𝑐
𝑧
�
2
�. (2.6) 

The Gaussian beam phase shift is defined as 

𝜙0 = arctan �
𝑧
𝑧𝑐
�. (2.7) 

In the far-field, that is 𝑧 ≫ 𝑧𝑐, the radius of curvature 𝑅 approximates 𝑧, so the beam 
propagates as a spherical wave. In this case, the beam radius 𝜔 grows linearly with 𝑧, 
and the asymptotic beam growth angle can be defined as 

𝜃0 = tan−1 �
𝜆

𝜋𝜔0
�. (2.8) 
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Typically, the beam angle is small and the arctangent can be approximated by its 
argument. 

Quasioptical theory provides a powerful tool for the simple analysis of many radiating 
systems at mm-wave frequencies. However, some considerations should be 
addressed: 

a) The paraxial approximation performs reasonably well for beam divergence 
within 30º of the propagation axis. In practice, it is still applied up to 45º, 
although discrepancies become more significant. 

b) Corrugated feed horns provide aperture field distributions extremely similar to 
a Gaussian function. It means that a fundamental mode analysis is enough to 
characterize its radiating performance. Other feeds may require multimode 
analysis, by expanding its aperture field distribution in terms of a set of Gauss-
Hermite or Gauss-Laguerre functions. It is still manageable with modern 
computational tools, but lacks the simplicity of the fundamental mode 
approach. Consequently, the determinant factor is the fraction of power in the 
fundamental mode, known as Gaussicity, and if it is solely large enough to 
reasonably represent the radiation pattern. For example, 98% of the power in a 
corrugated horn is radiated in the fundamental mode, whereas this value 
reduces to 88% in the case of a rectangular horn.  

 
(a) 

 
(b) 

Fig. 2.1: Gaussian beam propagation: (a) electric field sections of a beam propagating from beam waist, 
and (b) cut showing beam radius and equiphase surfaces along the propagation axis.  

 

2.2 System overview 

Due to the intended broadband nature of the system, a 4f topology has been chosen 
for the design. This singular configuration is widely used in conventional optics for 
image processing, and provides an optical path that is frequency-independent [7]. Its 
scheme is depicted in Fig. 2.2, and is based on two identical lenses separated by twice 
their focal length 𝑓, and the input and output points located at the outer sides, at the 
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focal points of each lens respectively. Thus, we have a symmetric collinear topology of 
total length 4𝑓. Each lens transforms the spherical wave front radiated by the source 
into a plane wave front at the middle of the system, and vice versa. Since it provides a 
collimated beam between the two lenses, it can be assumed that a flat sample placed 
at the middle of the system is illuminated by a plane wave.  

With respect to the implementation at mm-wave frequencies, two microwave horn 
feeds will be used as radiators. Horn antennas provide radiation patterns that can be 
well characterized by quasioptical theory. Lenses will be manufactured in Teflon, which 
is an easily available, low loss and low permittivity polymer material. The input beam 
waist will be located near the aperture of the first horn antenna. The reference plane 
will be defined at the middle of the system, which coincides with the output beam 
waist location after the lens, as it is stated by Gaussian optics theory. 

The 4𝑓 topology ideally maximizes power coupling between the two horn antennas. In 
practice, a fraction of power will be lost due to different causes: 

a) reflections, due to impedance mismatching at the horn antennas, and lenses, 
b) power dissipated due to dielectric losses of the lens material, 
c) beam truncation due to the finite dimensions of the lenses and sample holder, 
d) power coupling losses due to imperfect component alignment. 

 
Fig. 2.2: Optical scheme of a 4f system. 

 

2.3 Rectangular feed horns 

There exists a wide variety of commercial feed types and specifications that could 
meet our system requirements and frequency range. For the present design, standard-
gain rectangular horn antennas, model SGH-10 from Millitech, have been chosen. The 
physical dimensions of the antennas are specified in Fig. 2.3. They provide a typical 
beamwidth of 25º and a typical gain of 24 dB in the band of interest. Although 
corrugated conical horns provide better Gaussicity, rectangular horns are preferred in 
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this case due to its broadband behavior, reduced cost, and improved polarization 
purity.  

 
Fig. 2.3: Physical dimensions of the horn feeds: 𝑎 = 24.6 mm, 𝑏 = 18.7 mm, and 𝑐 = 49.2 mm. 

The quasioptical analysis of rectangular horns propagating the fundamental 𝑇𝐸10 
mode can be performed by a separate analysis in the two perpendicular coordinates 
[6]. Larger aperture dimension 𝑎 will be defined in the 𝑥 direction, and dimension 𝑏 in 
the 𝑦 direction. At the aperture, the beam radiuses that maximize the coupling to the 
fundamental Gaussian mode are 

𝜔𝑥 = 0.35𝑎, 𝜔𝑦 = 0.5𝑏 (2.9) 

for each coordinate respectively [6]. The beam-waist for a feed horn is not located at 
its aperture, but at a certain distance 𝑧0 behind it. Both the beam-waist offset and 
radius can be obtained as 

𝑧0 =
𝑅ℎ

1 + �𝜆𝑅ℎ 𝜋𝜔𝑥 𝑦⁄
2� �2

 (2.10) 

and 

𝜔0 =
𝜔𝑥/𝑦

�1 + �𝜋𝜔𝑥/𝑦
2 /𝜆𝑅ℎ�

2
, (2.11) 

where 𝑅ℎ is the horn slant length (see Fig. 2.4). As it can be observed in Fig. 2.5, both 
parameters present a slight variation with frequency. The beam-waist radius is similar 
for both coordinates, and can be approximated by 𝜔0 ≈ 4.9 mm. The variation of the 
waist offset is more critical, since it determines the alignment of the horn with respect 
to the focal point. Since it cannot be placed at an optimum location for all the 
frequencies, and moreover it differs in both coordinates, this circumstance will 
translate into certain loss of coupling efficiency in the system. As a compromise, an 
offset value of 𝑧0 ≈ 35 mm will be taken. 

The electric field distribution at the aperture of the rectangular horn can be written as 

𝐸𝑎𝑝(𝑥,𝑦) = cos �
𝜋𝑥
𝑎
� exp�−𝑗

𝜋(𝑥2 + 𝑦2)
𝜆𝑅ℎ

�, (2.12) 

 A

B

C
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for |𝑥| ≤ 𝑎/2 and |𝑦| ≤ 𝑏/2. The field distribution is separable in both coordinates, so 
that the quasioptical analysis can be performed separately at 𝑥 and 𝑦 directions. In the 
𝑥 direction, the electric field describes a truncated cosine function, which can be 
efficiently fitted by a simple Gaussian distribution. However, in the 𝑦 direction the field 
describes a truncated constant function, which is highly non-Gaussian, and would 
require Gaussian beam mode expansion to be fitted with some degree of reliability. 

Gaussian beam mode expansion consists in decomposing the electric field as  

𝐸(𝑥,𝑦) = � � 𝑎𝑚𝑛𝐸𝑚𝑛(𝑥,𝑦)
𝑛𝑚

, (2.13) 

 
Fig. 2.4: Gaussian beam produced by a feed horn. 

 
Fig. 2.5: Beam-waist radius 𝜔0 and beam-waist location 𝑧0 for the rectangular feed horns. 
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where 𝑚,𝑛 is the order of the mode, and all the 𝐸𝑚𝑛 form a complete orthonormal 
system of functions. In Cartesian coordinate system, Gauss-Hermite beam modes are 
commonly used, so that 

𝐸𝑚𝑛(𝑥,𝑦) =
1

�𝜋𝜔𝑥𝜔𝑦2𝑚+𝑛−1𝑚!𝑛!
𝐻𝑚 �

√2𝑥
𝜔𝑥

�𝐻𝑛 �
√2𝑦
𝜔𝑦

� exp�−
𝑥2

𝜔𝑥2
−
𝑦2

𝜔𝑦2
− 𝑗𝑘𝑧

−
𝑗𝜋𝑥2

𝜆𝑅𝑥
−
𝑗𝜋𝑦2

𝜆𝑅𝑦
+
𝑗(2𝑚 + 1)𝜙0𝑥

2
+
𝑗(2𝑛 + 1)𝜙0𝑦

2 �, 

(2.14) 

where 𝐻𝑚 and 𝐻𝑛 are Hermite polynomials of order 𝑚 and 𝑛. In the case of the feed 
aperture, the expansion coefficients 𝑎𝑚𝑛 can be calculated from the analytical electric 
field (2.12) as  

𝑎𝑚𝑛 = �𝐸𝑚𝑛
∗ (𝑥, 𝑦)𝐸𝑎𝑝(𝑥,𝑦)𝑑𝑥𝑑𝑦. (2.15) 

It is a good practice to use a normalized version of these coefficients 

𝑐𝑚𝑛 =
𝑎𝑚𝑛

√𝒫
, (2.16) 

where 

𝒫 = �|𝐸(𝑥,𝑦)|2𝑑𝑥𝑑𝑦.  (2.17) 

In such a case, the magnitude |𝑐𝑚𝑛|2 represents the fraction of power contained in 
mode 𝑚𝑛. In addition, if the problem is separable in 𝑥𝑦 coordinates, the mode 
coefficients can also be decomposed as 𝑐𝑚𝑛 = 𝑐𝑚,𝑥𝑐𝑛,𝑦. 

The electric field in each coordinate at the horn aperture fitted by a single Gaussian 
mode, and by the first 50 modes, is represented in Fig. 2.6. The list of computed 
coefficients is given in Table 2.1. It should be noted that odd Hermite functions are 
anti-symmetric and, since the aperture field is symmetric in each plane, odd-mode 
coefficients will be zero. In the 𝑥 direction, for the truncated cosine function, the 
fundamental Gaussian mode (𝑐0,𝑥) contains 98.9% of power. On the contrary, in the 𝑦 
direction, the fundamental mode (𝑐0,𝑦) contains only 89.0% of power, due to the 
difficulty of representing a truncated constant function by a sum of Gaussian functions 
(see Fig. 2.6). Accordingly, combining both results, the fundamental Gaussian mode for 
the two-dimensional expansion (𝑐00) contains 88% of power. In practice, a single 
fundamental Gaussian beam mode expansion will presumably reproduce well the 
shape of the main lobe of the beam propagating in the near-field. However, the 
consideration of the side-lobes, which in this case will be relatively prominent at the 
E-plane, would require higher-order mode expansion. This will be used for the 
calculation of the truncation losses at the lens and sample holder. 
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Fig. 2.6: Normalized electric field at the aperture of the feed horn (x, y coordinates), and Gaussian beam 
mode expansion for a single Gaussian mode and for the first 50 modes. 

 

 
Table 2.1: Gaussian beam mode expansion of the electric field at the horn aperture. 

𝑚/𝑛 𝑐𝑚,𝑥 ∑�𝑐𝑚,𝑥�
2 𝑐𝑛,𝑦 ∑�𝑐𝑛,𝑦�

2 ∑�𝑐𝑚,𝑥�
2 ∙ ∑�𝑐𝑛,𝑦�

2
 

0 0.9946 98.93 % 0.9434 89.00 % 88.05 % 
2 0.0040 98.93 % 0.0099 89.01 % 88.06 % 
4 -0.0895 99.74 % -0.1812 92.30 % 92.05 % 
6 0.0346 99.85 % 0.1464 94.44 % 94.30 % 
8 0.0102 99.87 % -0.0621 94.82 % 94.70 % 

10 -0.0238 99.92 % -0.0126 94.84 % 94.76 % 
12 0.0174 99.95 % 0.0589 95.19 % 95.14 % 
14 -0.0048 99.95 % -0.0761 95.76 % 95.72 % 
16 -0.0054 99.96 % 0.0706 96.26 % 96.22 % 
18 0.0100 99.97 % -0.0511 96.52 % 96.49 % 
20 -0.0095 99.98 % 0.0255 96.59 % 96.57 % 

… 
30 -0.0056 99.986 % 0.0445 97.15 % 97.14 % 

… 
50 0.0007 99.993 % -0.0302 97.78 % 97.78 % 

… 
100 0.0011 99.998 % 0.0165 98.39 % 98.39 % 

… 
150 -0.0006 99.999 % 0.0077 98.73 % 98.73 % 

 

 

-a/2 -10 -8 -6 -4 -2 0  2  4  6  8  10 a/2
x-axis (mm)

0

0.5

1

El
ec

tri
c 

fie
ld

Analytical
Fundamental mode
50 modes

-b/2 -8 -6 -4 -2 0 2 4 6 8 b/2
y-axis (mm)

0

0.5

1

El
ec

tri
c f

ie
ld



Free-space W-band setup for the electrical characterization of materials and mm-wave components 

 
16 

2.4 Plano-hyperbolic lenses 

With regard to the design of the lenses, a first limitation appeared concerning the size 
of the block of Teflon available for its manufacturing. It restricted the diameter of the 
lenses to a maximum of 𝐷𝑙 = 180 mm. In quasioptics, a rule of the thumb to avoid 
important truncation effects is to design components of dimension 𝐷 > 4𝜔, were 𝜔 is 
the beam radius at the aperture. Since the beam propagated by the antenna diverges 
along its trajectory, there is a maximum focal distance 𝑓 to place the lens fulfilling the 
truncation rule. Solving (2.4) for 𝜔(𝑧) < 𝐷𝑙/4, it is determined that the lens should be 
placed at 𝑓 < 193 mm from the beam waist. For simplicity, it has been chosen a focal 
number 𝑁 = 𝑓/𝐷𝑙  equals to one, so the focal distance of the system design is 𝑓 =
180 mm. The propagation of the fundamental mode Gaussian beam with these system 
specifications is illustrated in Fig. 2.7. It can be clearly observed how the radiated field 
is collimated between the two lenses.  

 
Fig. 2.7: Beam propagation (beam radius in solid-blue, and equiphase curves in dashed-green) along the 
quasioptical system at 100 GHz. 

Since the lens has finite dimensions, the radiated beam will suffer truncation effects. 
The diameter has been chosen so that 𝐷𝑙 > 4𝜔, which ensures fractional power lost 
lower than 3 ⋅ 10−4 for the fundamental Gaussian mode [6]. However, as it was seen 
above, an appreciable amount of power is contained in higher order modes (in 
particular at E-plane), which means broader main lobe and the presence of significant 
secondary lobes. Therefore, truncation should be considered in the analysis. To 
illustrate this effect, the electric field at 100 GHz at the lens interface (𝑧 = 𝑓 =
180 mm), reconstructed from the fundamental mode in the 𝑥 direction (98.9% of 
power) and 151 modes in the 𝑦 direction (97.7% of power), is represented in Fig. 2.8. 
As a reference, the edge of the lens aperture has also been plotted in the graph. Two 
prominent side lobes appear in the E-plane (𝑦-axis), which are partially truncated by 
the lens window. The fractional power loss can be evaluated by integrating the 
radiation pattern that falls inside the aperture. Both the beam radius and the 
truncation losses at the lens interface are shown in Fig. 2.9. Up to 8.5 % of power is 
lost due to truncation in the lower part of the band. 
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Fig. 2.8: Normalized electric field (dB) of the incident beam (vertical polarization) at the lens interface at 
100 GHz, obtained from 𝑐0,0 to 𝑐0,151 Gauss-Hermite modes (96.6% of coupled power). 

 
Fig. 2.9: Beam-radius and estimated truncation losses at the lens. 

There exist multiple topologies for the design of the lenses. In this case, a plano-
hyperbolic design has been chosen, since they are thinner compared with spherical 
ones, which in turn reduces attenuation losses. The lens will be placed in such a way 
that none of the surfaces coincides with an equiphase front of the incident wave. In 
our case, it means that the plane surface is facing the horn feed (quasi-spherical wave 
front), and the hyperbolic one facing the collimated beam (plane wave front). In this 
configuration, the power reflected from a surface does not couple back to the incident 
wave, which avoids the formation of stationary waves and reduces the reflection 
coefficient seen from the feeds. 
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Setting the origin of coordinates at the vertex of the hyperbolic face, the curved 
surface of the lens in cylindrical coordinates can be expressed as [6] 

𝑟2 = 2𝑓𝑧(𝑛 − 1) + 𝑧2(𝑛2 − 1), (2.18) 

whereas the thickness of the lens in a plano-hyperbolic configuration is 

𝑡𝑙 =
𝑓

𝑛 + 1
��1 +

𝐷𝑙2

4 𝑓2
(𝑛 + 1)
(𝑛 − 1)

− 1�, (2.19) 

which in our design gives 𝑡𝑙 = 40.8 mm. Reflection and attenuation losses caused by 
the lens material can be estimated assuming a flat-faced block of Teflon with thickness 
𝑡𝑙. Teflon has dielectric constant 𝜀𝑅 = 2.05, index of refraction 𝑛 = 1.43, and loss 
tangent tan(𝛿) ≈ 5 ⋅ 10−4. Firstly, the reflection parameter obtained from a circuit 
simulator is shown in the upper plot of Fig. 2.10. Multiple peaks appear in the response 
due to the in-phase combination of reflected signals at both surfaces of the block at 
certain frequencies. Peak values of -9.2 dB are obtained, which corresponds to 
reflection loss of 12 %. Secondly, the signal attenuation due to dielectric losses can be 
determined as 

𝐿𝑑 = 1 − exp �−
2𝜋𝑛 tan(𝛿)

𝜆0
𝑡𝑙�, (2.20) 

where 𝜆0 is the free-space wavelength. As it is observed in the lower plot of Fig. 2.10, 
this effect is more pronounced at high frequencies, obtaining values as high 6.5 %. 

 
Fig. 2.10: Estimated reflection parameter and dielectric loss of the designed lens made of Teflon. 
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In practice, lenses usually have thickness that is not negligible (i.e., thick lenses). Unlike 
ideal thin lenses, whose focal points are defined with respect to a single plane, two 
principal planes need to be defined in the case of a thick lens. In general, such planes 
will not coincide with the position of the two outer vertices. A plane wave coming from 
one side of the lens will converge at the focal point in the other side. The extended 
incident and emerged rays meet at points that describe a curved surface, which may o 
may not reside within the lens. Principal planes, defined in both sides, are the planes 
that approximate such surfaces in the paraxial region. According to this definition, in 
the case of a plano-hyperbolic lens one principal plane is tangent to the curved 
surface, and the other principal plane is located within the lens at a distance ℎ1, as it is 
illustrated in Fig. 2.11. Each focal point, F1 and F2, is separated a distance 𝑓 with 
respect to the corresponding principal plane (which intersect the propagation axis at 
principal points H1 and H2). In the case of the planar surface, principal point H1 is at a 
distance denoted as ℎ1 far from vertex V1. In the case of the curved surface, principal 
point H2 coincides with vertex V2, and therefore ℎ2 = 0. Distance ℎ1 can be calculated 
using the following equation [8] 

ℎ1 = −
𝑓(𝑛 − 1)𝑡𝑙

𝑅2𝑛
, (2.21) 

where 𝑅2 is the radius of curvature of the convex surface. The radius of curvature 𝑅2 
can be derived from the Lensmaker’s formula [8] 

1
𝑓

= (𝑛 − 1) �
1
𝑅1

−
1
𝑅2
�, (2.22) 

where 𝑅1 = ∞ is the radius of curvature of the planar surface. From (2.22) and (2.21) 
we obtain that 𝑅2 = −77.7 mm (negative means convexity), and ℎ1 = 28.5 mm. This 
value is important to properly locate the focal point for the feed alignment. 

 
Fig. 2.11: Principal planes in a plano-convex thick lens. 
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As it was observed in Fig. 2.10, the designed lens made of Teflon and with smooth 
surfaces may present reflections of about -9.2 dB at certain frequencies. Instead, using 
rectangular corrugations at the surface may substantially reduce this effect (Fig. 2.12). 
Such grooved surface, with the appropriate dimensions, acts as a quarter-wave 
impedance transformer between the lens and the medium. In the case of Teflon 
(𝜀𝑅 = 2.05) and air (𝜀0 = 1), corrugations should synthesize a layer with permittivity  

𝜀𝑚 = �𝜀𝑅𝜀0 , (2.23) 

which in this case corresponds to 𝜀𝑚 = 1.43. The required thickness is 

𝑑𝑚 =
𝜆0

4�𝜀𝑚
, (2.24) 

which gives 𝑑𝑚 = 0.67 mm at 92.5 GHz in our case. To avoid higher-order grating 
effects, the corrugations should be separated [9]  

2𝑙𝑔 ≤
𝜆0

√𝜀𝑅 (1 + |sin𝜃𝑟|)
, (2.25) 

where 𝜃𝑟 is the refracted angle within the lens. Since the half-angle subtended by the 
lens at the feed is about 36º, the maximum refracted angle obtained from the Snell’s 
law is 𝜃𝑟,𝑚𝑎𝑥 ≈ 24º. Applying this to (2.25), we obtain that 2𝑙𝑔 ≤ 1.4 mm at 110 GHz, 
so a final value of 2𝑙𝑔 = 1.4 mm has been chosen in this case. The filling factor is 
defined as 

𝑓𝑔 =
𝑑𝑔
𝑙𝑔

, (2.26) 

and it has a different optimum value for perpendicular or parallel electric field 
polarization. In this case, grooves will be cut with rotational symmetry relative to the 
axis of propagation, so polarization will be spatially dependent with respect to the 
grooves. In case of random polarization, best performance is obtained for 𝑓𝑔 = 50 % 
[10], which implies that 2𝑑𝑔 = 2 𝑙𝑔 2⁄ = 0.7 mm in this case. The main geometrical 
parameters of the lenses are summarized in Table 2.2. 

 
Fig. 2.12: Geometry of a grooved surface. 
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Table 2.2: Geometrical parameters of the lenses. 

Parameter Value 

Material 
    electric permittivity 
    loss tangent 
    refraction index 

 
𝜀𝑅 

tan(𝛿) 
𝑛 

Teflon 
2.05 

5∙10-4 

1.43 
Topology  plano-hyp 
Focal distance 𝑓 180 mm 
Diameter 𝐷𝑙 180 mm 
Thickness 𝑡𝑙 40.8 mm 
Radius of curvature 
 

𝑅1 
𝑅2 

∞ 
-77.7 mm 

Distance to principal planes 
 

ℎ1 
ℎ2 

28.5 mm 
0 

Corrugations 
    depth 
    width 
    separation 

 
𝑑𝑚 
2𝑑𝑔 
2𝑙𝑔 

 
0.67 mm 
1.4 mm 
0.7 mm 

 

2.5 Sample holder 

The general case in which a Gaussian beam incident to a thin lens is transformed into 
another Gaussian beam at the output (as it is illustrated in Fig. 2.13) is commonly 
modeled by means of ABCD matrices. If the input beam waist is located at 𝑑𝑖𝑛 = 𝑓, the 
analysis substantially simplifies, since the output beam waist will be located at 
𝑑𝑜𝑢𝑡 = 𝑓, and its waist radius can be determined directly as [6] 

𝜔0,𝑜𝑢𝑡 =
𝜆 𝑓

𝜋 𝜔0,𝑖𝑛
. (2.27) 

This is the case of the 4𝑓 configuration, in which the output beam waist is located at 
the middle of the system (measurement plane). The radius of curvature of the 
equiphase surface at the beam waist is infinite, so a sample situated at this point will 
be illuminated by a collimated plane wave. The calculated output beam waist radius is 
represented in Fig. 2.14 for the band of interest, and it has an average value of 
𝜔0,𝑜𝑢𝑡 = 38.4 mm, which gives an idea about the size of the beam spot with which the 
sample is illuminated. The dimension of the sample should be chosen in accordance 
with the size of the beam spot in order to minimize truncation effects. The fractional 
power transmitted through a sample holder as a function of the diameter of its circular 
section is also represented in Fig. 2.14. It can be observed that, for 90 % transmission, 
a sample holder larger than 100 mm is required. If an empty sample holder is used 
during the calibration process with the network analyzer, truncation effects are, in 
theory, eliminated from the S-parameter measurement. However, in practice, 
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truncation reduces the available power at the receivers, and consequently degrades 
the sensitivity of the RF system.  

 
Fig. 2.13: Gaussian beam transformation by a thin lens. 

 

 
Fig. 2.14: Beam waist radius and estimated truncation losses at the measurement plane. 
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3 System assembly 

3.1 Mechanical and electrical setup 

Both the stability and the precision of the system depend to a large extent on an 
adequate mechanical design. In this case, the system has been mounted on four 
square aluminum plates (40×40 cm), with a grid of M4 holes separated 50 mm. The 
plates are joined together by means of longitudinal aluminum bars. A set of sliding rails 
on the base allows moving the different components longitudinally to its optimal 
position. 

As it was described in Section 2, the system is formed by a transmitter, a receiver, a 
couple of lenses, and the MUT sample in the middle. In the case of the 
transmitter/receiver, each mm-wave head is mounted on a platform. The horn feed is 
held by means of a vertical aluminum plate with a circular hole of the same dimension 
that the waveguide flange. Such antenna support can be moved forward/backward 
using the rail mechanism. Each Teflon lens is screwed to an aluminum frame, which 
can also be moved on the rails. Finally, the sample can be either placed alone or fixed 
to an aluminum frame. An overview of the system is shown in Fig. 3.1. 

 
Fig. 3.1: Mechanical design of the implemented system. 
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The RF setup is represented in Fig. 3.2. The system is formed by a vector network 
analyzer (Keysight PNA 8364B), a mm-wave controller (Keysight N5260A), and two 
mm-wave heads (OML WR-10). In few words, the mm-wave heads are 
transmission/reflection modules with harmonic multipliers, which up/down-convert 
the signals generated by the VNA. This allows measuring the S-parameters at 
frequencies well above the maximum frequency of the network analyzer alone (i.e., 
50 GHz for the PNA 8364B). In the present configuration, with WR-10 waveguide 
outputs, the mm-wave signal is in the frequency range of 75-110 GHz. For this band, 
the RF (radio-frequency) multiplier works at the 6th harmonic and the LO (local 
oscillator) multiplier at the 8th harmonic [11]. Since the IF (intermediate frequency) 
signal is at 8.33 MHz, this gives a frequency range for the RF signal of 12.5-18.33 GHz, 
and the frequency range for the LO signal is 9.38-13.75 GHz. 

 
Fig. 3.2: General scheme of the mm-wave measurement system. 

 

3.2 Preliminary tests 

Once the system was assembled as indicated in Fig. 3.2, it was appropriate to do some 
preliminary tests to verify the correct performance of the system. A first test that 
serves to confirm the correct configuration of the RF equipment, and also to quantify 
the reflection losses of the horn feeds, consists of measuring the reflection parameter 
(𝑠11) of such antennas. For this purpose, a waveguide calibration is performed at the 
interface between the mm-wave heads and the horn antennas. An absorbent material 
is placed in front of the antenna to avoid undesired external reflections. The measured 
reflection parameter is shown in Fig. 3.3. It can be observed that this parameter is 
better than -27 dB in the band of interest, which means return losses lower than 0.2 % 
in each antenna. 
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Fig. 3.3: Measured reflection parameter (𝑠11) of the rectangular horn feeds. 

The second test consists of measuring the transmission/reflection of the whole system, 
with no MUT in the middle, and calibrating at the waveguide ends of the mm-wave 
heads. This setup is particularly useful, since it allows correcting the position of the 
different components in order to maximize the overall transmitted power. The 
obtained response is represented in Fig. 3.4. As it can be observed, the transmission 
parameter varies between -3 and -4 dB in the band of interest, which means that 
40-50 % of the power transmitted by the first antenna is effectively received by the 
other antenna. Main loss contribution comes from the dielectric lenses and their 
associate losses (truncation, dielectric losses and reflection). Although losses in this 
kind of free-space lens-based system are appreciably higher than in a transmission-line 
setup, in which the signal is confined in a closed medium and lossy lenses are not 
needed, the obtained ratio is enough for S-parameter measurements and dielectric 
characterization. In practice, system losses are automatically removed from the 
measured parameters using free-space calibration methods, as it will be explained in 
the following subsection. A summary with the main contributions in terms of losses, 
obtained from analysis or measurement, can be found in Table 3.1. 

 

Table 3.1: Main contributions to system losses. Terms (m) and (s) indicate data obtained from 
measurement or simulation respectively. 

 75 GHz 92.5 GHz 110 GHz 
Loss Transm. Loss Transm. Loss Transm. 

Horn Reflection (m) 0.1% (x2) 99.8% 0.2% (x2) 99.6% 0.2% (x2) 99.6% 

Lens 
(*)ungrooved 
surface. 

Truncation (s) 8.5% (x2) 83.7% 7.8% (x2) 85.0% 7.0% (x2) 86.5% 
Reflection (s)(*) 12.0% (x2) 77.4% 12.0% (x2) 77.4% 12.0% (x2) 77.4% 
Dissipation (s) 4.5% (x2) 91.2% 5.5% (x2) 89.3% 6.5% (x2) 87.4% 

Sample 
180 mm Truncation (s) 5.0% 95.0% 5.0%  95.0% 5.0% 95.0% 

TOTAL  56.0%  55.6%  55.4% 
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Fig. 3.4: Measured reflection/transmission parameters of the free-space system (thru). 

 

3.3 Free-space calibration methods 

In any VNA setup, calibration is required just before a measurement, in order to 
eliminate the systematic errors of the system. Moreover, it also serves to define the 
input/output reference planes. In the present setup, the measured parameters need 
to be referred to both sides of the planar parallel-faced sample, in order to properly 
calculate the dielectric constant. Calibration methods usable for free-space 
propagation are in many cases equivalent to those used for guided-wave systems, and 
they differ in the set of standards that are used. The most common methods for free 
space are described below. 

3.3.1 Thru-reflect-line (TRL) 

It requires a high reflection load (reflect), and two “transmission lines” of different 
length (thru, line). The reflect standard can be easily implemented by a metal plate at 
the center of the system. For the thru, the antennas are located at each original 
positions with the empty sample holder, whereas for the line standard one of the 
antennas should be moved back quarter wavelength, and returned to its original 
position after calibration. At high frequencies, expensive positioning fixture is required 
to move the antennas and lenses accurately enough for good calibration (e.g., at 
100 GHz, wavelength is only 3 mm). Nevertheless, this method has been extensively 
used in many free-space systems due to its simplicity, up to frequencies of some GHz 
[5]. 

3.3.2 Gated-reflect-line (GRL) 

This method has been specifically developed for free-space measurements, and does 
not need absorbing materials or moving the antennas during calibration. Calibration is 
performed in two steps. Firstly, a conventional 2-port coaxial or waveguide calibration 
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is done at the antenna interfaces. Secondly, the free-space calibration is done using 
reflect (metal plate), line (thru) and gated standards. This third standard is a 
measurement of the reflection parameter with empty fixture, filtering in the time 
domain (gating) contributions between the antenna and the measurement plane. 
Some recent works obtain excellent results using GRL calibration, with improved 
accuracy with respect to TRL or TRM methods [12]. However, calibration accuracy can 
be compromised if reflections due to antenna mismatching or any intermediate 
focusing element are comparable to the power reflected by the short [13]. Therefore, 
this technique may result inappropriate in systems with dielectric lenses. 

3.3.3 Thru-reflect-match (TRM) 

It uses a zero-length line (thru), a high reflection load (reflect), and a matched load 
(match). The match standard can be synthesized in free-spaced using a piece of 
absorbent material. The antennas are fixed during calibration, which gives advantage 
over TRL at very high frequencies. Furthermore, this method is much easier to 
configure than GRL in a standard VNA. One difficulty can be finding an appropriate 
broadband absorbing material with enough size. Moreover, imperfections in the match 
standard cause residual errors after calibration.  

Regarding the pros and cons of the calibration methods described above, TRM has 
been found as preferable for the present free-space setup. The three steps needed for 
basic TRM calibration are illustrated in Fig. 3.5 (a). In practice, short and match 
standards have been respectively implemented by a 0.5 mm-thick aluminum sheet and 
a 4 cm-thick absorbing block, with dimensions of about 25×25 cm, as it is shown in Fig. 
3.5 (b)(c). The match standard can be improved if the absorber is tilted about 45º to 
minimize the reflection towards the ports. 

 

 

 
Fig. 3.5: (a) Steps for TRM calibration. Implemented standards short (b) and match (c). 

Conventional TRM calibration would provide a unique reference plane located at the 
middle of the measurement setup. However, for the correct extraction of the material 
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properties, the reflection and transmission parameters need to be defined at both 
faces of the dielectric sample. Therefore, some corrections should be applied to 
measured ‘raw’ data [14]: 

• Sample misplacement: In practice, the middle plane of the sample could be 
axially displaced with respect to the center plane of the system (Fig. 3.6). This 
would cause positive phase shifting in the reflection coefficient at one port, and 
negative at the other. Since both phase shifts are equal in magnitude, this 
effect can be easily corrected by computing the resulting phase as the average 
of the measured phases at both ports.  

• Sample thickness: TRM calibration assigns zero value to the phase of the 
transmission parameter in absence of MUT. In other words, both input and 
output reference planes coincide, which is valid only for infinitely thin samples 
(Fig. 3.6). In practice, samples with thickness 𝑑 are corrected by adding a phase 
correction factor to the measured reflection and transmission parameters. This 
factor can be calculated as 

𝜙𝑑 = −
2𝜋𝑑
𝜆0

, (3.1) 

where 𝜆0 is the free-space wavelength.  

• Forbidden phase range: It should be considered that the phase of the reflection 
coefficient of a dielectric sample cannot take values between -90º and +90º 
[14]. This can be mathematically corrected by adding an extra 180º factor. 

 
Fig. 3.6: Considerations after TRM calibration: sample misplacement (𝛿) and sample thickness (𝑑). 
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parameters, so that we can assume 𝑠11 = 𝑠22 and 𝑠21 = 𝑠12. It is possible to compile 
all the above corrections into a single set of relations as 

𝑠21 = �
|𝑠21𝑚 | + |𝑠12𝑚 |

2 � ⋅ exp �𝑗
∠𝑠21𝑚 + ∠𝑠12𝑚

2 � ⋅ exp �−𝑗
2𝜋𝑑
𝜆0

�

𝑠11 = �
|𝑠11𝑚 | + |𝑠22𝑚 |

2 �
�����������
amplitude averaging

⋅ exp�𝑗
∠𝑠11𝑚 + ∠𝑠22𝑚

2 �
�������������

phase averaging

⋅ exp �−𝑗
2𝜋𝑑
𝜆0

�
���������
sample thickness

⋅ exp �𝑗 �
𝜋
2

±
𝜋
2
������������� ,

forbidden phase range

 (3.2) 

where the ‘raw’ S-parameters measured after TRM calibration are denoted as 𝑠𝑥𝑦𝑚 , and 
the corrected parameters as 𝑠𝑥𝑦. The module of both parameters is expressed in the 
first term as the average of measured magnitudes at both VNA ports. The second term 
is a phase averaging, which in the case of the reflection coefficient serves to correct 
sample misplacement (𝛿). The third term is the extra phase term used to consider the 
sample thickness. Finally, the fourth term in the reflection parameter should be 
consequently applied to avoid the forbidden -90º to +90º phase range. Apart from the 
previous corrections, smoothing can be applied to measured data in the VNA to reduce 
jitter effects. 
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4 Extraction algorithms 
Obtaining the intrinsic properties of a dielectric material from the measurement of the 
S parameters (either in a guided or free-space setup) is not trivial, since we have to 
solve a system of equations that is overdetermined due to phase ambiguities. In order 
to overcome this circumstance, multiple algorithms have been developed to extract 
the dielectric parameters.  

4.1 Nicolson-Ross-Weir (NRW) 

This model was originally developed by A. M. Nicolson and G. F. Ross for time domain 
[3], and later adapted by W. W. Weir for frequency domain using a network analyzer 
[15]. The algorithm is fast and non-iterative, and it allows extracting both the magnetic 
permeability 𝜇𝑅 and the electric permittivity 𝜀𝑅 of a material from the reflection and 
transmission measurements of the sample. However, it is inaccurate for low-loss 
materials, and diverges when the thickness of the sample is multiple of half-
wavelength. 

The S-parameters of a dielectric slab can be written as [3] 

𝑠11 =
Γ(1 − 𝑇2)
1 − Γ2𝑇2

, 𝑠21 =
𝑇(1 − Γ2)
1 − Γ2𝑇2

, (4.1) 

where Γ is the reflection at the interface of a semi-infinite sample, and 𝑇 is the 
transmission coefficient between both faces in a sample of a given thickness 𝑑. The 
reflection coefficient Γ can be derived in terms of S-parameters as [15] 

Γ = 𝑋 ±�𝑋2 − 1, (4.2) 

being |Γ| < 1, and where 

𝑋 =
𝑠112 − 𝑠212 + 1

2𝑠11
. (4.3) 

On the other hand, the transmission coefficient can be expressed as [15] 
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𝑇 =
𝑠11 + 𝑠21 − Γ

1 − (s11 + s21)Γ
. (4.4) 

In free-space propagation, the magnetic permeability and electric permittivity can be 
calculated as 

𝜇𝑅 =
𝜆0
Λ

1 + Γ
1 − Γ

, 𝜀𝑅 =
𝜆0
Λ

1 − Γ
1 + Γ

 (4.5) 

where 𝜆0 = 𝑐/𝑓 is the vacuum wavelength, and  

1
Λ2

= −�
1

2𝜋𝑑
�ln �

1
𝑇
�� + 2𝑗𝜋𝑛�

2
. (4.6) 

The parameter 𝑛 = 0, ±1, ±2, … denotes the integer of 𝑑 𝜆𝑔⁄ , where 𝑑 is the thickness 
of the sample and 𝜆𝑔 = 𝜆0 √𝜀𝑅𝜇𝑅⁄  is the wavelength within the sample. As it can be 
observed, equation (4.6) has infinite roots due to phase ambiguity. The adequate value 
of 𝑛 can be resolved from initial guess values of 𝜀𝑅 and 𝜇𝑅, or by comparison of the 
measured and analytical values of the group delay. 

In the particular situation in which 𝜇𝑅 is known, as in the case of non-magnetic 
materials for which 𝜇𝑅 = 1, the calculation process is greatly simplified. In such a case, 
the electric permittivity can be directly obtained as 

𝜀𝑅 = 𝜇𝑅
(1 − Γ)2

(1 + Γ)2. (4.7) 

which avoids the uncertainty of 1 Λ2⁄ . 

In the case that |𝑠11| tends to zero, as it occurs when 𝑑 is a multiple of 𝜆/2, the 
parameter 𝑋 obtained from equation (4.3) tends to infinite, making the algorithm 
unstable at such frequencies. Same problem occurs with materials whose reflection 
coefficient is small. 

4.2 NIST algorithm 

In order to solve the stability problems inherent to the NRW method, a new iterative 
algorithm was developed by the NIST (National Institute of Standards and technology) 
[16]. This model serves only for 𝜀𝑅 determination, and it works well if a good initial 
guess is available. Nevertheless, it performs robustly and accurately for both low-loss 
and high-loss materials. Unlike NRW method, NIST algorithm provides smooth and 
stable results in a broadband range, as it can be observed in Fig. 4.1. 

The propagation constant in free-space is defined as 

𝛾0 = 𝑗
2𝜋𝑓
𝑐

, (4.8) 
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where 𝑐 is the speed of light and 𝑓 is the frequency. Within the material, the 
propagation constant is 

𝛾 =
𝛾0
√𝜀𝑅

. (4.9) 

The reflection coefficient Γ can be calculated in terms of 𝛾0 and 𝛾 as 

Γ =
𝛾0 − 𝛾
𝛾0 + 𝛾

 (4.10) 

and the transmission coefficient 𝑇 as 

𝑇 = exp(−𝛾𝑑). (4.11) 

where 𝑑 is the thickness of the sample. 

A list of equalities is developed in [16], from which it is possible to define the following 
two functions 

𝐹1(𝜀𝑅) = �𝑠112 − 𝑠212 +
𝑇2 − Γ2

1 − Γ2𝑇2
�
2

= 0

𝐹2(𝜀𝑅) = �𝑠21 −
𝑇(1 − Γ2)
1 − 𝑇2Γ2

�
2

= 0.

 (4.12) 

From an initial guess of 𝜀𝑅 (around ±10 % of the real value), NIST is based on 
estimating the roots of 𝐹1 and 𝐹2 by means of an iterative algorithm. In case of using 
the Newton method as optimization tool, the algorithm steps are as follows: 

1. Assign the initial guess value 𝜀𝑅 = 𝜀𝑅∗  (it can be obtained from NRW method). 

2. Compute the Jacobian matrix 

 
Fig. 4.1: Determination of 𝜀𝑅′ , for a sample of Teflon with 𝑑 = 32.79 mm, applying NRW (solid) and 
NIST (dashed) algorithms (source: [16]). 
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𝐽 = �

𝐹1(𝜀𝑅 + ℎ) − 𝐹1(𝜀𝑅 − ℎ)
2ℎ

𝐹1(𝜀𝑅 + 𝑗ℎ)− 𝐹1(𝜀𝑅 − 𝑗ℎ)
2ℎ

𝐹2(𝜀𝑅 + ℎ) − 𝐹2(𝜀𝑅 − ℎ)
2ℎ

𝐹2(𝜀𝑅 + 𝑗ℎ)− 𝐹2(𝜀𝑅 − 𝑗ℎ)
2ℎ

� (4.13) 

where ℎ is small. 

3. Update a new value of 𝜀𝑅 as 

�𝑅𝑒
{𝜀𝑅}

𝐼𝑚{𝜀𝑅}�
𝑛𝑒𝑤

= �
𝑅𝑒{𝜀𝑅}
𝐼𝑚{𝜀𝑅}� − 𝐽−1 �

𝐹1(𝜀𝑅)
𝐹2(𝜀𝑅)� (4.14) 

4. Back to step 2 until 𝐹1(𝜀𝑅),𝐹2(𝜀𝑅) < 𝛿 (being 𝛿 the allowable error) or until 
maximum number of iterations is reached. 

4.3 Other methods 

4.3.1 Stable non-iterative (SNI) 

This method is based on a simplified version of NRW, but corrects the instabilities for 
long samples using a non-iterative algorithm [17]. In the case of 𝜇𝑅 = 1, all the steps 
are as described for NRW in Section 4.1 except for the final calculation of 𝜀𝑅, which is 
obtained in this case as 

𝜀𝑅 =
𝜆02

Λ2
 . (4.15) 

 

4.3.2 Transmission-epsilon-fast (TEF) 

This method provides an estimation of 𝜀𝑅 using only the transmission parameter 𝑠21 
[18]. It works similarly to NIST, but roots are estimated just by using function 𝐹2 from 
(4.12). It works better for long samples, and is adequate for systems with significant 
error in the reflection measurement. 

 

All the previously described methods are summarized in Table 4.1. 

Table 4.1: Summary of the main extraction methods. 

Algorithm Measurement Result Best use 
NRW 𝑠11,𝑠21 𝜀𝑅,𝜇𝑅 Thin samples. Magnetic materials. 
NIST 𝑠11,𝑠21 𝜀𝑅 Thick samples. Low-loss and high-loss materials. 
SNI 𝑠11,𝑠21 𝜀𝑅 Thick samples. High-loss materials. 
TEF 𝑠21 𝜀𝑅 Thin and thick samples. High-loss materials. 



 

 
34 

 

5 Experimental results 

5.1 Characterization of dielectric materials 

5.1.1 Teflon (5 mm) 

Teflon (PTFE) is a polymer widely used as an insulating material in microwave 
applications, because it is chemically inert, has a high melting temperature, and is 
flexible and easy to machine. Its nominal dielectric properties are 𝜀𝑅 ≈ 2.05 and 
tan(𝛿) ~10−4. In this case, the measurement setup of a 5-mm thick Teflon slab in the 
free-space system is shown in Fig. 5.1. This sample is electrically thick, since its width is 
larger than the wavelength at W band (i.e., 𝜆0 = 3 mm at 100 GHz). The measured 
S-parameters (after corrections, see equation (3.2)), both in magnitude and phase, are 
represented in Fig. 5.2. As it can be observed, they acceptably agree with those 
expected from their theoretical characteristics. The dielectric constant extracted using 
the four methods described in Section 4 are plotted in Fig. 5.3. As it was expected, as 
the sample is multiple of half wavelength, the NRW method presents instabilities at 
the frequencies at which 𝑠11 tends to zero. The other three methods, NIST, SNI and 
TEF, provide a stable result very close to 2.05. In the case of NIST, the frequency-
dependent complex electric permittivity is plotted in Fig. 5.4. The average value is 
𝜀𝑅 = 𝜀𝑅′ − 𝑗𝜀𝑅′′ = 2.0406 − 𝑗0.0002, which corresponds to tan(𝛿) = 1.1 ⋅ 10−4. 

 
Fig. 5.1: Experimental setup for a 5-mm width sample of Teflon. 
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Fig. 5.2: Measured (solid) and theoretical (dashed) S-parameters of the sample of Teflon (𝑑=5 mm).  

 
Fig. 5.3: Extracted dielectric constant of the sample of Teflon (𝑑=5 mm) using different algorithms. 

 
Fig. 5.4: Extracted electric permittivity of the sample of Teflon (𝑑=5 mm) using NIST algorithm. 
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5.1.2 Teflon (250 µm) 

In this second test, another sample of Teflon with reduced thickness (𝑑 =250 µm) has 
been characterized. The measured and theoretical S-parameters are plotted in Fig. 5.5. 
There are some discrepancies with the reflection parameter 𝑠11. In this case, the sheet 
has been attached to an outer metallic frame. However, some practical difficulties 
were encountered during the experiment to hold the thin sample completely flat. If 
the sample does not have perfect flat and parallel faces, part of the incident power 
may be scattered, and consequently the reflected parameter may be undervalued. The 
extracted electric permittivity is presented in Fig. 5.6, and gives an average value of 
𝜀𝑅 = 𝜀𝑅′ − 𝑗𝜀𝑅′′ = 1.9942 − 𝑗0.0438. This corresponds to tan(𝛿) = 2.2 ⋅ 10−2, which is 
about two orders of magnitude higher than the nominal value for this material. This 
shows the limitations when measuring thin samples, and in particular to reliably 
characterize the loss tangent of materials with low losses. 

 
Fig. 5.5: Measured (solid) and theoretical (dashed) S-parameters of the sample of Teflon (𝑑=250 µm). 

 
Fig. 5.6: Extracted electric permittivity of the sample of Teflon (𝑑=250 µm) using NIST algorithm. 
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5.1.3 Styrofoam (30 mm) 

Styrofoam (XPS) is a polymer with a dielectric constant very close to that of air, whose 
nominal parameters are 𝜀𝑅 ≈ 1.04 and tan(𝛿) ~10−4. In this case, a sample with 
thickness of about 29-30 mm has been measured. The experimental and theoretical 
S-parameters are shown in Fig. 5.7. There are some discrepancies with the magnitude 
of 𝑠11. In any case, due to its low level, this parameter will not have much influence for 
the NIST algorithm (see cost functions in (4.12)).  The extracted electric permittivity is 
represented in Fig. 5.8. The average value is 𝜀𝑅 = 𝜀𝑅′ − 𝑗𝜀𝑅′′ = 1.0337 − 𝑗0.0009, 
which gives loss tangent of tan(𝛿) = 8.4 ⋅ 10−4. These values acceptably agree with 
those expected theoretically.  

 

 
Fig. 5.7: Measured (solid) and theoretical (dashed) S-parameters of the sample of Styrofoam (𝑑=30 mm). 

 

 
Fig. 5.8: Extracted electric permittivity of the sample of Styrofoam (𝑑=30 mm) using NIST algorithm. 
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5.1.4 Kapton (75 µm) 

The last dielectric sample is a very thin sheet of Kapton (PI) of 𝑑 = 75 µm. The nominal 
dielectric parameters are 𝜀𝑅 ≈ 3.4 and tan(𝛿) ~10−2. The measured and theoretical 
S-parameters are shown in Fig. 5.9. The experimental results reproduce well the 
predicted response, although some instabilities appear in the lower part of the band. 
The calculated electric permittivity is presented in Fig. 5.10. The average value is 
𝜀𝑅 = 𝜀𝑅′ − 𝑗𝜀𝑅′′ = 3.2174 − 𝑗0.0483, and the corresponding loss tangent is tan(𝛿) =
1.5 ⋅ 10−2, which reasonably agree with the nominal parameters. 

 

 
Fig. 5.9: Measured (solid) and theoretical (dashed) S-parameters of the sample of Kapton (𝑑=75 µm). 

 

 
Fig. 5.10: Extracted electric permittivity of the sample of Kapton (𝑑=75 µm) using NIST algorithm. 
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5.1.5 Summary of results 

The extracted dielectric parameters obtained from the different material samples are 
summarized in Table 5.1. In view of the results, some conclusions can be drawn: 

• Thicker samples are preferable for more accurate results. 
• In the experiments, regardless the sample thickness, the extracted dielectric 

constant acceptably agreed with the nominal values (<5.5% error). 
• In the case of low-loss materials (e.g., Teflon or Styrofoam), the sample 

thickness should be in the order the wavelength (i.e., 3 mm at 100 GHz) to get 
reliable values of the loss tangent. 

• In the case of ‘lossy’ materials, such as Kapton, the obtained loss tangent value 
was in the order of magnitude of the nominal value, despite the extremely thin 
sheet used for the test. 

Table 5.1: Extracted parameters for a set of dielectric samples. 

Sample 
(material, thickness) 

𝛆𝐑′  𝐭𝐚𝐧(𝛅) 
Nom. Meas. Nom. Meas. 

Teflon (PTFE), 5 mm 2.05 2.0406 ~10−4 1.1∙10−4 
Teflon (PTFE), 250 µm 2.05 1.9942 ~10−4 2.2∙10−2 
Styrofoam (XPS), 30 mm 1.04 1.0337 ~10−4 8.4∙10−4 
Kapton (PI), 75 µm 3.4 3.2174 ~10−2 1.5∙10−2 

 

5.2 Measurement of quasioptical components 

Apart from the characterization of dielectric materials, the implemented measurement 
system also serves to obtain the free-space reflection/transmission parameters of any 
quasioptical device, including matching layers, corrugated slabs, absorbers, frequency 
selective surfaces or polarizers. Two examples will be presented below: a pyramid-
array matched load, and a wire-grid polarizer. 

5.2.1 Matched load 

The matched load is made of Eccosorb MF-117, is based on a pyramidal array 
structure, and its diameter is 90 mm. The experimental setup, which is shown in Fig. 
5.11, requires one half of the measurement system, since only the reflection 
coefficient is measured. Accordingly, it is necessary to establish a 1-port calibration 
procedure. In this respect, three standards are used for this test: short, λ/4-offset 
short, and match (see Fig. 5.12). Since the size of the load is comparable to that of the 
beam-waist, the sample has been surrounded by microwave absorber to avoid 
stationary waves due to secondary lobes. This absorbing foam is also present during 
calibration, so that its effect is eliminated from the measurements. 
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The obtained reflection coefficient (𝑠11) is represented in Fig. 5.13. It has been tested 
for two load orientations: electric field parallel to the grid described by the pyramids 
(𝜙 = 0), and rotated 45 degrees (𝜙 = 45º). It can be observed how the reflection 
parameter is unaffected by the relative orientation between the radiated field and the 
load. The return losses are better than -23 dB in the whole band of interest. 

 
Fig. 5.11: Measurement setup for the pyramid-array matched load. 

 

 
Fig. 5.12: One-port calibration procedure for the matched load, based on short, offset-short and match 
standards. 

 

 
Fig. 5.13: Measured reflection coefficient of the pyramid-array matched load. 
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5.2.2 Wire-grid polarizer 

Grid polarizers consist of many thin parallel metallic wires placed in a plane, and are 
utilized as beam splitters/diplexers, variable attenuators or reflectors [8]. The 
measurement setup for the characterization of a wire grid is shown in Fig. 5.14. During 
the calibration and measurement, the metallic frame around the window of the grid 
polarizer has been covered with absorbing material to avoid undesired reflections on 
the metallic surface. In this case, a full 2-port TRM calibration is performed. 

The measured transmission for different orientations of the grid polarizer is shown in 
Fig. 5.15. When the electric field is oriented parallel to the wires, the grid behaves as a 
metallic surface, and the incident wave (𝐸∥) has to be reflected. In this case, the 
measured isolation is better than -32 dB. When the electric field is perpendicular to 
the wires, the incident wave (𝐸⊥) is able to pass through the grid. The measured 
insertion loss in this second scenario is about -0.25 dB. Finally, when the grid is 
oriented at 45º, the incident field (𝐸45º) can be decomposed in two components, 
parallel and perpendicular to the wires respectively. Consequently, only one half of the 
power −associated to the perpendicular component− passes through the grid. The 
transmission parameter is about -6 dB in this last case. The additional -3 dB factor is 
due to polarization mismatch at the receiving antenna. 

 
Fig. 5.14: Measurement setup for the wire grid polarizer (red lines indicate the orientation of the wires).  

 
Fig. 5.15: Measured transmission of the wire-grid polarizer for different orientations of the incident 
electric field relative to the wires. 
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6 Conclusion 
Free-space measurement systems allow the experimental validation of microwave and 
millimeter-wave components, and is particularly useful in the field of radio astronomy 
systems. In this work, a free-space setup working at W-band (75-110 GHz) has been 
presented. The quasioptical theory has been demonstrated to be a simple but 
powerful tool to predict the optical characteristics and performance of the system. The 
implemented setup has been successfully validated by multiple experimental results, 
including the electrical characterization of dielectric materials and mm-wave 
components. In the near future, we plan to extend the functionality of the system to 
cover also the Q-band (33-50 GHz). 
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