ESTUDIO DEL EFECTO DEL MULTIPATH EN DISTINTAS ANTENAS GEODÉSICAS GNSS

Javier López Ramasco, Víctor Martín Guijarro, Beatriz Córdoba Hita.

INFORME TÉCNICO IT- CDT 2017-15

MINISTERIO DE FOMENTO

Los desarrollos descritos en este informe técnico han sido cofinanciados por el Programa Operativo Fondo Tecnológico FEDER de la UE bajo el convenio IGN-MINECO denominado "Radiotelescopio de VLBI geodésico y astrométrico para su integración en la red VGOS (VGOSYEBES)"

Índice

Gestion del documento	6
Metadatos del documento	6
Documentos relacionados	7
Introducción	8
Objetivos y Metodología	9
Elección del emplazamiento	9
Equipo	9
Trabajo de Campo	10
Trabajo de gabinete	13
Resultados	17
Disco metálico	17
Disco Absorbente	22
Resultados finales	25
Conclusiones	26
Bibliografía	28

Ilustraciones

Ilustración 1 - Esquema básico del efecto del multipath
Ilustración 2 – Antena tipo <i>choke ring</i> de la casa <i>Trimble</i>
Ilustración 3 - Discos de material absorbente L1
Ilustración 4 - Observación con disco metálico (izquierda) y discos absorbentes L1
sobre el propio disco metálico (derecha)11
Ilustración 5 – Localización de los puntos procesados dentro del Observatorio de Yebes
e imposición de las líneas base entre ellos14
Ilustración 6 – Valores obtenidos de latitud para cada día que ha sido procesado con
disco metálico
Ilustración 7 - Valores obtenidos de longitud para cada día que ha sido procesado con
disco metálico
Ilustración 8 – Detalle de las variaciones de longitud para la antena TRM57971.00
NONE
Ilustración 9 - Valores obtenidos de altura elipsoidal para cada día que ha sido
procesado con disco metálico
Ilustración 10 - Promedios de altura elipsoidal con desviaciones de los días procesados
con disco metálico
Ilustración 11 - Valores obtenidos de Y UTM ETRS89 para cada día que ha sido
procesado con disco metálico
Ilustración 12 - Valores obtenidos de X UTM ETRS89 para cada día que ha sido
procesado con disco metálico
Ilustración 15 - Valores obtenidos de longitud para cada día que ha sido procesado con
disco absorbente
Ilustración 16 - Valores obtenidos de latitud para cada día que ha sido procesado con
disco absorbente
Ilustración 17 - Valores obtenidos de altura elipsoidal para cada día que ha sido
procesado con disco absorbente
Ilustración 18 - Valores obtenidos de X UTM para cada día que ha sido procesado con
disco absorbente
Ilustración 19 - Valores obtenidos de Y UTM para cada día que ha sido procesado con
disco absorbente
Ilustración 20 - Valores obtenidos de X UTM para cada día que ha sido procesado 25
Ilustración 21 - Valores obtenidos de altura elipsoidal para cada día que ha sido
procesado
Ilustración 22 - Valores obtenidos de Y UTM para cada día que ha sido procesado 26

Tablas

Tabla 1 – Resumen de los días procesados, tipo de disco, de antena y su posición	12
Tabla 2 - Días procesados con el disco metálico	15
Tabla 3 - Días procesados con el disco absorbente	16
Tabla 4 - Promedios y desviaciones típicas finales de las coordenadas geodésicas de	los
días procesados con disco metálico	21
Tabla 5 - Promedios y desviaciones típicas finales de las coordenadas UTM ETRS89	de
los días procesados con disco metálico	22

Gestión del documento

En este apartado se muestra la información acerca de la evolución del documento.

Metadatos del documento

_	
Título del proyecto	Estudio del efecto del <i>multipath</i> y la variación en las coordenadas
	con el uso de un disco metálico bajo la antena GNSS
Identificador	
Nombre del fichero	Antenas_Yebes
Fecha de creación	Agosto 2017
Tema	Memoria de proyecto
Versión	2.0
Objetivo	Memoria descriptiva del conjunto de todos los trabajos, tanto de
	campo como de gabinete, realizados para obtener coordenadas de cada día que el receptor GNSS ha estado observando y adquiriendo
	datos de los satélites en el pilar del <i>local tie</i> de Yebes "P025".
Docarinaión	
Descripción	Documentar todo aquello que se considere relevante o que haya llevado tiempo recopilar acorde a la experiencia de trabajo de
	campo o de gabinete con el software <i>Bernese 5.2</i> de cara a la
	presentación de los resultados obtenidos.
Autor del documento	Víctor Martín Guijarro
Autor/es del proyecto	Javier López Ramasco, Víctor Martín Guijarro ,Beatriz Córdoba Hita
Otros contribuidores	Marcelino Valdés Pérez de Vargas, José Antonio Sánchez Sobrino
al proyecto	ivial centro values refez de vargas, Jose Antonio Sanchez Sobrino
Fuente	
1 0.01100	
Difusión	Instituto Geográfico Nacional, Ministerio de Fomento
Idioma	Español (SPA)
Documento	Instalación_Bernese52_v2.0.
relacionados	Tutorial_Bernese52
Periodo de validez	Revisable

Documentos relacionados

Nombre	Versión	Ruta	Descripción
Instalación_Bernese52_	2.0	Linux Raid	Manual de instalación de
v2.0.			Bernese 5.2 en el sistema
			operativo OpenSUSE 12.3
Tutorial_Bernese52	1.0	http://www.bern	Tutorial para comenzar a
		ese.unibe.ch/docs	procesar con <i>Bernese 5.2.</i>
		/TUTORIAL.pdf	Contiene una campaña de
			prueba que es muy útil para
			iniciarse en el manejo del
			programa

Introducción

El efecto *multipath* o camino múltiple, se produce cuando al receptor GNSS le llega la señal de un satélite no solo de forma directa, sino que también cuando se refleja

contra el suelo, o cualquier otra superficie, como edificios próximos, coches, ...

Existen diversas formas de reducir el efecto del multipath en las observaciones. En primer lugar habría que elegir el mejor lugar posible para estacionar el receptor GNSS y la antena: un sitio con un horizonte lo más despejado posible, evitando siempre la presencia cercana de árboles o grandes edificios. En segundo lugar la construcción de la antena influye en el efecto multipath. Existen antenas con un diseño más apropiado que otras para corregir dicho efecto. Un ejemplo de ellas son las denominadas antenas geodésicas que son antenas preparadas para la observación continuada e ininterrumpida, con planos de

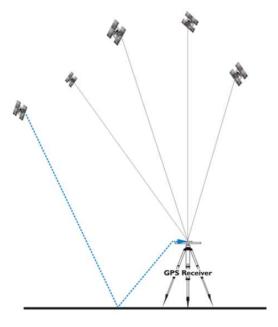


Ilustración 1 - Esquema básico del efecto del multipath

tierra y diseño *choke ring* y que según los fabricantes consiguen ser menos vulnerables a los efectos del *multipath*.

Ilustración 2 – Antena tipo choke ring de la casa Trimble

En tercer lugar, existe *firmware* de seguimiento de equipos que evitan la recepción de ondas reflejadas. No obstante, ningún método de los vistos anteriormente podrá nunca evitar la influencia de la totalidad del efecto multipath sobre la antena. Se desconoce hasta qué punto, si se incorporase un elemento plano de distintos materiales entre la parte inferior de la antena y el suelo, podría afectar aumentando o disminuyendo el efecto del multpath en la propia antena.

Objetivos y Metodología

El objetivo fundamental es el de evaluar y analizar las variaciones producidas por situar a diferentes alturas bajo la antena, discos de distintos materiales:

- Un disco metálico. Este mecanismo es similar al empleado en el artículo "GNSS AntennaSensitivity to SiteDependent Error Sources".
- Un disco de un material absorbente de la señal L1.

Elección del emplazamiento

En el Centro Astronómico de Yebes(Guadalajara), se ha construido una red de pilares para el establecimiento del *local tie*. La monumentación de los pilares es de una gran calidad debido a su diseño que consta de una tapa y un tubo exterior protegiendo el pilar de la intemperie (protección meteorológica y estabilidad térmica). La red ha sido observada con precisiones que rondan el milímetro gracias a la observación robotizada con una estación Leica TS-50 comandada a través de Bluetooth por un PC con software elaborado por personal del observatorio. Se ha elegido el pilar 25 (P025) para realizar el estudio, debido a que disfrutaba del horizonte más despejado (dentro siempre de las posibilidades del entorno).

Equipo

A continuación se enumera y describe el material con el que se ha contado para la observación:

- Receptor GNSS Trimble NetR9.
- Antena TRM57971.00 NONE (zephyr).
- AntenaTRM59900.00 NONE (choke ring).

- Bastón metálico de 60 cm de altura y 3 cm de diámetro. Permitirá prolongar la altura de la antena GNSS sobre el pilar y poder desplazar a diferentes alturas el disco metálico que se utilizará para el experimento.
- Disco metálico de aluminio con diámetro de 50 cm y espesor de 5 mm, que se va a colocar en el bastón, variando sualtura entre la parte superior del pilar y la parte inferior de la antena.
- Discos de material absorbente L1 con diámetro de 50 cm y espesor de 5 cm. Se colocarían sobre el disco metálico variando su altura para observar qué sucedería empleando este material.

Ilustración 3 - Discos de material absorbente L1

- Adaptador marca SECO-MFG para nivelación y orientación de antenas GNSS de 8 cm de altura.
- Alargadera eléctrica: para suministrar energía desde la toma más cercana hasta el receptor GNSS.

Trabajo de Campo

El disco metálico se va a colocar en tres posiciones distintas. En cada posición se mantendrá 2 o 3 días completos, para después moverlo a la siguiente. Esta metodología se repetirá dos veces para cada antena. Además, antes de cambiar de antena se quitará el disco y se dejará unos días observando sin él, para tener unas coordenadas de referencia del punto sin influencia ni efectos del disco.

Este procedimiento se volverá a repetir de la misma forma, pero colocando un disco de material absorbente L1 en la parte superior del disco metálico.

A continuación se muestran las posiciones a las que se va a colocar el disco, teniendo en cuenta que se mide de arriba a abajo, es decir, la posición 0 cm estaría en la parte superior del bastón en contacto con la antena y la posición 48 cm sería la posición más baja que mediríamos:

Ilustración 4 - Observación con disco metálico (izquierda) y discos absorbentes L1 sobre el propio disco metálico (derecha)

- Disco metálico:

Posición 1 = 0 cm

Posición 2 = 24 cm

Posición 3 = 48 cm

Disco absorbente:

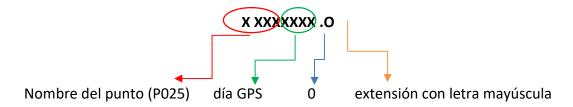
Posición 1 = 10 cm

Posición 2 = 34 cm

Posición 3 = 58 cm

Antena	l	Disco	Posición (cm)	Cambio	Días completo	s		Mes
TRM57971.00	NONE	Disco metálico	0	17	18	19		Marzo
TRM57971.00	NONE	Disco metálico	24	20	21	22		Marzo
TRM57971.00	NONE	Disco metálico	48	23	24	25	26	Marzo
TRM57971.00	NONE	Disco metálico	48	27	28	29		Marzo
TRM57971.00	NONE	Disco metálico	24	30	31	1	2	Abril
TRM57971.00	NONE	Disco metálico	0	3	4	5		Abril
TRM57971.00	NONE	No disco		6	7,8	9, 10	11	Abril
TRM59900.00	NONE	No disco		12	13,14	15	16	Abril
TRM59900.00	NONE	Disco metálico	0	17	18	19		Abril
TRM59900.00	NONE	Disco metálico	24	20	21	22	23	Abril
TRM59900.00	NONE	Disco metálico	48	24	25	26		Abril
TRM59900.00	NONE	Disco metálico	48	27	28, 29	30	1	Abril
TRM59900.00	NONE	Disco metálico	24	2	3	4		Mayo
TRM59900.00	NONE	Disco metálico	0	5	6	7		Mayo
TRM59900.00	NONE	No disco		8	9, 10	11, 12	13, 14	Mayo
TRM59900.00	NONE	Disco abs.	10	15	16	17		Mayo
TRM59900.00	NONE	Disco abs.	34	18	19	20		Mayo
TRM59900.00	NONE	Disco abs.	58	22	23	24		Mayo
TRM59900.00	NONE	Disco abs.	58	25	26	27	28	Mayo
TRM59900.00	NONE	Disco abs.	34	29	30	31		Mayo
TRM59900.00	NONE	Disco abs.	10	1	2	3	4	Junio
TRM59900.00	NONE	No disco		5	6	7		Junio
TRM57971.00	NONE	No disco		8	9	10	11	Junio
TRM57971.00	NONE	Disco abs.	10	12	13	14	15	Junio
TRM57971.00	NONE	Disco abs.	34	16	17	18		Junio
TRM57971.00	NONE	Disco abs.	58	19	20,21	22 , 23	24 , 25	Junio
TRM57971.00	NONE	Disco abs.	34	26	27			Junio
TRM57971.00	NONE	Disco abs.	10	29	30	1	2	Junio Julio
TRM57971.00	NONE	No disco		3	4	5		Julio

Tabla 1 – Resumen de los días procesados, tipo de disco, de antena y su posición



Trabajo de gabinete

Los trabajos de gabinete han consistido básicamente en el procesamiento de los datos GNSS con el software *Bernese 5.2*. Se ha partido de un fichero .PCF de los usados en el Área de Geodesia del Instituto Geográfico Nacional (IGN) y se ha adaptado a las características de los datos y los requerimientos de tiempo en los que debía hacerse este proyecto.

Para empezar se han renombrado los ficheros RINEX generados por el receptor GNSS de forma que tengan la nomenclatura que *Bernese 5.2* requiere:

También se ha realizado una comprobación visual de los cabeceros de los RINEX en aras de que presenten una correcta información en lo que respecta a altura de antena, tipo de antena, tipo de receptor, desplazamientos X, Y, Z, etc.

En el proyecto de *Bernese*, se han introducido unas coordenadas aproximadas del punto P025, a partir de las cuales se procesarán los datos de cada día y dará como resultado unas coordenadas finales. También se ha introducido el tipo de receptor, la antena y el periodo de tiempo de medición de cada antena para cada posición.

Se han utilizado efemérides rápidas, que son publicadas 2-3 días después de la medición con el fin de agilizar resultados ya que se ha comprobado que la mejora de la precisión con efemérides precisas no afecta significativamente a los resultados.

Para reducir el tiempo de procesamiento, en lugar de utilizar toda la red de estaciones permanentes del IGN incluyendo el punto P025, se han tenido únicamente en cuenta las estaciones GNSS YEBE y YEB1, que se encuentran a unos 300 m del pilar P025. Las líneas base que se han procesado para cada día y de las cuales el programa resolverá ambigüedades son:

YEBE - P025

YEBE - YEB1

Ilustración 5 – Localización de los puntos procesados dentro del Observatorio de Yebes e imposición de las líneas base entre ellos

Tampoco se ha hecho uso del modelo ionosférico, porque no supone una mejora en líneas base tan cortas como las de este proyecto.

En las tablas siguientes se muestran los días procesados, y las características de cada uno de ellos (antena, posición del disco, día,...)

Orden	Punto	Receptor	Antena	Día GPS	Disco
1	P025	Trimble NetR9	TRM57971.00 NONE	77	0
2	P025	Trimble NetR9	TRM57971.00 NONE	78	0
3	P025	Trimble NetR9	TRM57971.00 NONE	80	24
4	P025	Trimble NetR9	TRM57971.00 NONE	81	24
5	P025	Trimble NetR9	TRM57971.00 NONE	83	48
6	P025	Trimble NetR9	TRM57971.00 NONE	84	48
7	P025	Trimble NetR9	TRM57971.00 NONE	85	48
8	P025	Trimble NetR9	TRM57971.00 NONE	87	48
9	P025	Trimble NetR9	TRM57971.00 NONE	88	48
10	P025	Trimble NetR9	TRM57971.00 NONE	90	24
11	P025	Trimble NetR9	TRM57971.00 NONE	91	24
12	P025	Trimble NetR9	TRM57971.00 NONE	92	24
13	P025	Trimble NetR9	TRM57971.00 NONE	94	0
14	P025	Trimble NetR9	TRM57971.00 NONE	95	0
15	P025	Trimble NetR9	TRM57971.00 NONE	97	No Disc
16	P025	Trimble NetR9	TRM57971.00 NONE	98	No Disc
17	P025	Trimble NetR9	TRM57971.00 NONE	99	No Disc
18	P025	Trimble NetR9	TRM57971.00 NONE	100	No Disc
19	P025	Trimble NetR9	TRM57971.00 NONE	101	No Disc
20	P025	Trimble NetR9	TRM59900.00 NONE	103	No Disc
21	P025	Trimble NetR9	TRM59900.00 NONE	104	No Disc
22	P025	Trimble NetR9	TRM59900.00 NONE	105	No Disc
23	P025	Trimble NetR9	TRM59900.00 NONE	106	No Disc
24	P025	Trimble NetR9	TRM59900.00 NONE	108	0
25	P025	Trimble NetR9	TRM59900.00 NONE	109	0
26	P025	Trimble NetR9	TRM59900.00 NONE	111	24
27	P025	Trimble NetR9	TRM59900.00 NONE	112	24
28	P025	Trimble NetR9	TRM59900.00 NONE	113	24
29	P025	Trimble NetR9	TRM59900.00 NONE	115	48
30	P025	Trimble NetR9	TRM59900.00 NONE	116	48
31	P025	Trimble NetR9	TRM59900.00 NONE	118	48
32	P025	Trimble NetR9	TRM59900.00 NONE	119	48
33	P025	Trimble NetR9	TRM59900.00 NONE	120	48
34	P025	Trimble NetR9	TRM59900.00 NONE	121	48
35	P025	Trimble NetR9	TRM59900.00 NONE	123	24
36	P025	Trimble NetR9	TRM59900.00 NONE	124	24
37	P025	Trimble NetR9	TRM59900.00 NONE	126	0
38	P025	Trimble NetR9	TRM59900.00 NONE	127	0
39	P025	Trimble NetR9	TRM59900.00 NONE	129	No Disc
40	P025	Trimble NetR9	TRM59900.00 NONE	130	No Disc
41	P025	Trimble NetR9	TRM59900.00 NONE	131	No Disc
42	P025	Trimble NetR9	TRM59900.00 NONE	132	No Disc
43	P025	Trimble NetR9	TRM59900.00 NONE	133	No Disc
44	P025	Trimble NetR9	TRM59900.00 NONE	134	No Disc

Tabla 2 - Días procesados con el disco metálico

Orden	Punto	Receptor	Antena		Día GPS	Disco
45	P025	Trimble NetR9	TRM59900.00	NONE	136	10
46	P025	Trimble NetR9	TRM59900.00	NONE	137	10
47	P025	Trimble NetR9	TRM59900.00	NONE	139	34
48	P025	Trimble NetR9	TRM59900.00	NONE	140	34
49	P025	Trimble NetR9	TRM59900.00	NONE	143	58
50	P025	Trimble NetR9	TRM59900.00	NONE	144	58
51	P025	Trimble NetR9	TRM59900.00	NONE	146	58
52	P025	Trimble NetR9	TRM59900.00	NONE	147	58
53	P025	Trimble NetR9	TRM59900.00	NONE	148	58
54	P025	Trimble NetR9	TRM59900.00	NONE	150	34
55	P025	Trimble NetR9	TRM59900.00	NONE	151	34
56	P025	Trimble NetR9	TRM59900.00	NONE	153	10
57	P025	Trimble NetR9	TRM59900.00	NONE	154	10
58	P025	Trimble NetR9	TRM59900.00	NONE	155	10
59	P025	Trimble NetR9	TRM59900.00	NONE	157	No Disc
60	P025	Trimble NetR9	TRM59900.00	NONE	158	No Disc
61	P025	Trimble NetR9	TRM57971.00	NONE	160	No Disc
62	P025	Trimble NetR9	TRM57971.00	NONE	161	No Disc
63	P025	Trimble NetR9	TRM57971.00	NONE	162	No Disc
64	P025	Trimble NetR9	TRM57971.00	NONE	164	10
65	P025	Trimble NetR9	TRM57971.00	NONE	165	10
66	P025	Trimble NetR9	TRM57971.00	NONE	166	10
67	P025	Trimble NetR9	TRM57971.00	NONE	168	34
68	P025	Trimble NetR9	TRM57971.00	NONE	169	34
69	P025	Trimble NetR9	TRM57971.00	NONE	171	58
70	P025	Trimble NetR9	TRM57971.00	NONE	172	58
71	P025	Trimble NetR9	TRM57971.00	NONE	173	58
72	P025	Trimble NetR9	TRM57971.00	NONE	174	58
73	P025	Trimble NetR9	TRM57971.00	NONE	175	58
74	P025	Trimble NetR9	TRM57971.00	NONE	176	58
75	P025	Trimble NetR9	TRM57971.00	NONE	178	34
76	P025	Trimble NetR9	TRM57971.00	NONE	181	10
77	P025	Trimble NetR9	TRM57971.00	NONE	182	10
78	P025	Trimble NetR9	TRM57971.00	NONE	183	10
79	P025	Trimble NetR9	TRM57971.00	NONE	185	No Disc
80	P025	Trimble NetR9	TRM57971.00	NONE	186	No Disc

Tabla 3 - Días procesados con el disco absorbente

Resultados

Disco metálico

El software *Bernese 5.2* da como resultado los puntos procesados en coordenadas cartesianas geocéntricas. Por medio del *PAG 1.3* (Programa de Aplicaciones Geodésicas), desarrollado por el propio IGN, se han transformado dichas ternas de coordenadas a coordenadas geodésicas WGS84.

Como resultados finales se han obtenido gráficas, promedios y desviaciones de los datos. A continuación se muestran unas gráficas con los valores obtenidos para cada día de la longitud, latitud y altura elipsoidal.

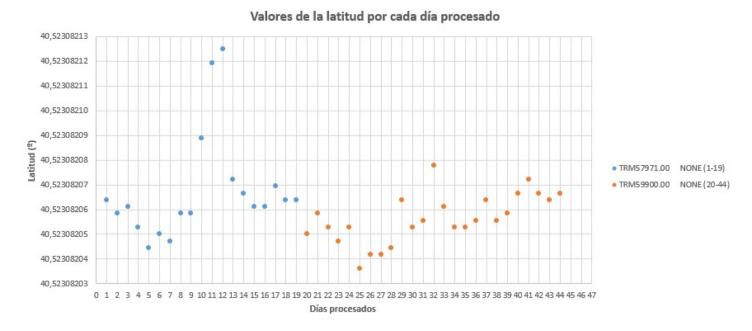


Ilustración 6 – Valores obtenidos de latitud para cada día que ha sido procesado con disco metálico

Se aprecia que hay tres puntos, correspondientes a los días 10, 11 y 12 procesados, cuyos valores de latitud parece se alejan bastante de lo que sería la tendencia del resto de la muestra.

Podrían tener una explicación, y es que durante esos días la antena no quedó bien fijada al bastón y giró unos 45º sobre sí misma a la vez que pudo sufrir una pequeña inclinación, lo que podría haber dado lugar a una variación mayor de lo esperado en planimetría.

En cuanto al resto de valores, tienen una buena desviación y varían en el octavo decimal. De hecho, la mayoría de los puntos se encuentra dentro del intervalo (40.52308204º, 40.52308207º).

Ilustración 7 - Valores obtenidos de longitud para cada día que ha sido procesado con disco metálico

En lo que respecta a la longitud, se aprecia cómo los valores en general tienden a aumentar. No obstante, para la antena TRM57971.00 NONE se observa una mayor dispersión sobre la media de los datos. Los mayores valores corresponden a la posición 48 y a los días en los que no hubo disco.

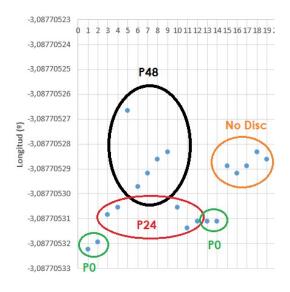


Ilustración 8 – Detalle de las variaciones de longitud para la antena TRM57971.00 NONE

Días procesados

Ilustración 9 - Valores obtenidos de altura elipsoidal para cada día que ha sido procesado con disco metálico

El efecto del multipath afecta principalmente a la componente altimétrica. Como se puede ver en la gráfica, la antena TRM59900.00 NONE, equipada con choke ring, es mucho más robusta y se ve menos afectada por este efecto. Se aprecia claramente cómo los valores registrados con esta antena tienen muy buena dispersión, entorno a un centímetro, ya esté el disco en una posición u otra, o se haya observado sin disco.

La antena TRM57971.00 NONE, es más económica y por lo tanto, supuestamente de menores prestaciones. Llama la atención cómo los puntos observados con esta antena en la posición 0, es decir, con el disco situado justo debajo de la antena, se distancian más de 2 cm del resto de puntos registrados con la TRM57971.00 NONE. Esto indicaría que cuanto más cerca se sitúa el disco de la parte inferior de la antena, el efecto del multipath es de mayor cuantía.

También se han calculado los promedios de coordenadas para cada posición del disco y cada antena, y se han obtenido las desviaciones. En lo que respecta a las de longitud y latitud, son buenas, pues están en el entorno del octavo decimal de grado ($\sim 1 mm$). En cuanto a las desviaciones de la altura elipsoidal, las desviaciones de cada posición son igualmente buenas, pues se sitúan por debajo del medio centímetro (<0.005 m). No obstante, hay un dato con el que se comprueba claramente la diferencia de comportamiento de una antena y otra respecto al multipath. La desviación total de la altura elipsoidal de todas las posiciones de la antena TRM57971.00 NONE (Zephyr), es de 0.013 m, y la de la TRM59900.00 NONE (choke ring) es de 0.002 m.

También se han transformado las coordenadas longitud y latitud a coordenadas ETRS89 UTM 30. Los resultados se han representado en gráficas y son similares a las de las coordenadas geodésicas.

Antena	Posición	Latitud (º)	Desv. Lon (º)	Longitud (º)	Desv. Lat (º)	h (m)	Desv. h (m)
		Lat. WGS84	Desv. Lat.	Lon. WGS84	Desv. Lon.	h.elip	Desv. h.
Antena	Posición	(⁰)	(º)	(⁰)	(2)	(m)	eilp(m)
TRM57971.00	P0	40,52308207	0,00000001	-3,08770532	0,00000001	968,158	0,004
TRM57971.00	P24	40,52308209	0,00000003	-3,08770531	0,00000000	968,181	0,002
TRM57971.00	P48	40,52308205	0,00000001	-3,08770529	0,00000001	968,188	0,003
TRM57971.00	No Disco	40,52308206	0,00000000	-3,08770529	0,00000000	968,192	0,003
TRM57971.00	Total	40,52308207	0,00000002	-3,08770530	0,0000001	968,181	0,013
TRM59900.00	P0	40,52308205	0,00000001	-3,08770526	0,00000001	968,194	0,003
TRM59900.00	P24	40,52308205	0,00000001	-3,08770526	0,00000001	968,196	0,001
TRM59900.00	P48	40,52308206	0,00000001	-3,08770525	0,00000000	968,196	0,003
TRM59900.00	No Disco	40,52308206	0,00000001	-3,08770526	0,00000001	968,195	0,001
TRM59900.00	Total	40,52308206	0,0000001	-3,08770526	0,0000001	968,195	0,002
Ambas antenas	Total	40,52308206	0,00000002	-3,08770527	0,00000002	968,189	0,011

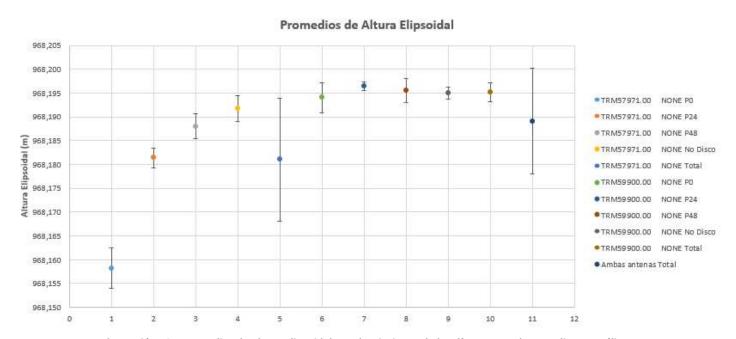


Ilustración 10 - Promedios de altura elipsoidal con desviaciones de los días procesados con disco metálico

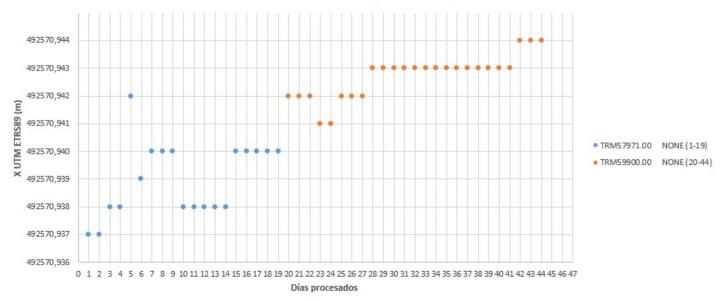


Ilustración 12 - Valores obtenidos de X UTM ETRS89 para cada día que ha sido procesado con disco metálico

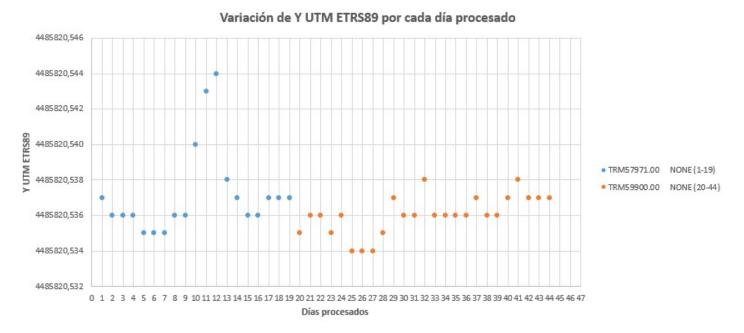


Ilustración 11 - Valores obtenidos de Y UTM ETRS89 para cada día que ha sido procesado con disco metálico

Al igual que en la gráfica de la latitud, se puede ver cómo los días 10, 11 y 12 tienen una mayor dispersión, ya que corresponden con los días en que la antena giró sobre sí misma perdiendo su orientación al norte y pudo haber perdido la verticalidad. Se diferencian como mínimo entre 2 y 6 milímetros del resto de valores más cercanos.

A continuación se muestra una tabla con los valores promediados y las desviaciones de las coordenadas X, Y de cada posición del disco, y de las observaciones realizadas sin disco.

			X UTM ETRS89		Y UTM ETRS89	
Antena		Posición	(m)	Desv. X (m)	(m)	Desv. Y (m)
TRM57971.00	NONE	P0	492570,938	0,001	4485820,537	0,001
TRM57971.00	NONE	P24	492570,938	0,000	4485820,540	0,004
TRM57971.00	NONE	P48	492570,940	0,001	4485820,535	0,001
TRM57971.00	NONE	No Disco	492570,940	0,000	4485820,537	0,001
TRM57971.00	NONE	Total	492570,939	0,001	4485820,537	0,003
TRM59900.00	NONE	P0	492570,942	0,001	4485820,536	0,001
TRM59900.00	NONE	P24	492570,943	0,001	4485820,535	0,001
TRM59900.00	NONE	P48	492570,943	0,000	4485820,537	0,001
TRM59900.00	NONE	No Disco	492570,943	0,001	4485820,536	0,001
TRM59900.00	NONE	Total	492570,943	0,001	4485820,536	0,001
Ambas ante	nas	Total	492570,941	0,002	4485820,537	0,002

Tabla 5 - Promedios y desviaciones típicas finales de las coordenadas UTM ETRS89 de los días procesados con disco metálico

Disco Absorbente

La finalidad del material absorbente de la señal L1 es que la señal rebotada recibida por la antena GNSS por "multicamino", pase a través de este material, el cual actúa como filtro y absorba la L1 de la señal.

El mayor inconveniente que ha presentado este material es que es muy sensible a las inclemencias meteorológicas. Al tratarse de una especie de espuma compactada, el agua de lluvia lo deshace poco a poco, con lo que pierde efectividad. Además, el agua se puede depositar en la parte superior del disco, encharcando todo el material y cubriéndolo de una película de agua que puede reflejar todavía más las señales con lo que podría aumentar el efecto del *multipath*.

A continuación se muestran unas gráficas con los valores obtenidos para cada día de la longitud, latitud y altura elipsoidal de los días en los que se ha colocado el disco de material absorbente L1.

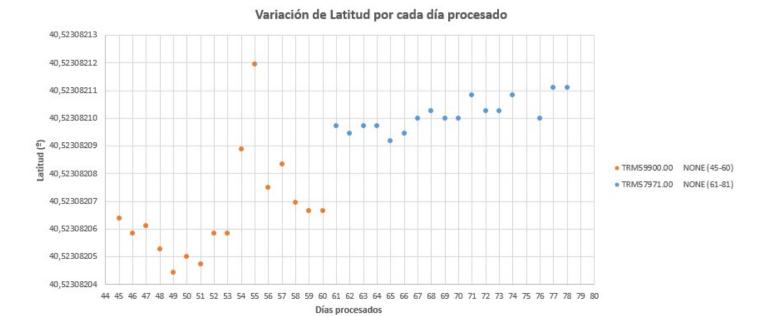


Ilustración 14 - Valores obtenidos de latitud para cada día que ha sido procesado con disco absorbente

Al igual que sucede en los resultados del disco metálico, las coordenadas de latitud procesadas se diferencian en el octavo decimal. No obstante, se observa una clara diferencia entre los puntos correspondientes a la antena TRM59900.00 NONE, que curiosamente y pese a ser una antena de mejores características tienen una mayor dispersión que los puntos de la antena TRM57971.00 NONE. Este comportamiento se repite en la gráfica de la longitud.

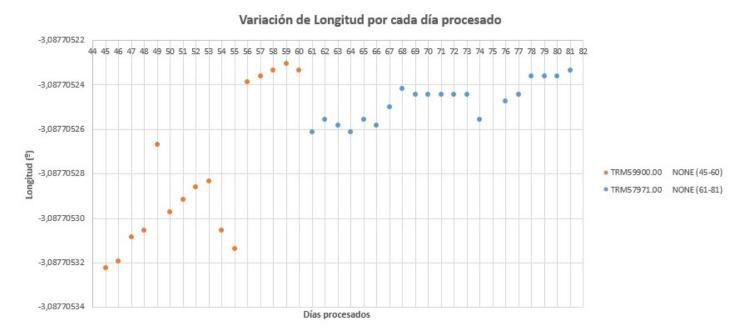


Ilustración 13 - Valores obtenidos de longitud para cada día que ha sido procesado con disco absorbente

En cuanto a la altura elipsoidal, es la antena TRM59900.00 NONE la que presenta mayores valores, aunque las mayores dispersiones son las de la antena TRM57971.00 NONE.

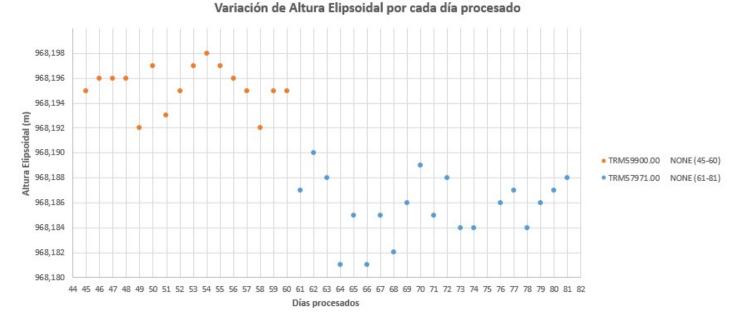


Ilustración 15 - Valores obtenidos de altura elipsoidal para cada día que ha sido procesado con disco absorbente

Las siguientes gráficas muestran las variaciones de coordenadas UTM de los puntos. No hacen más que corroborar lo expuesto en líneas anteriores.

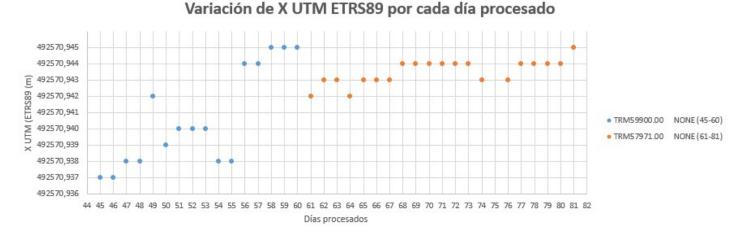


Ilustración 16 - Valores obtenidos de X UTM para cada día que ha sido procesado con disco absorbente

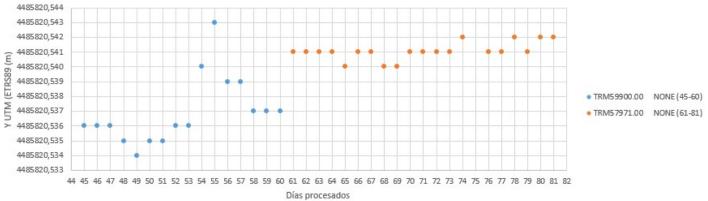


Ilustración 17 - Valores obtenidos de Y UTM para cada día que ha sido procesado con disco absorbente

Resultados finales

A continuación se van a mostrar gráficos donde se representan de manera conjunta las variaciones de coordenadas UTM y altura elipsoidal empleando disco metálico y absorbente:

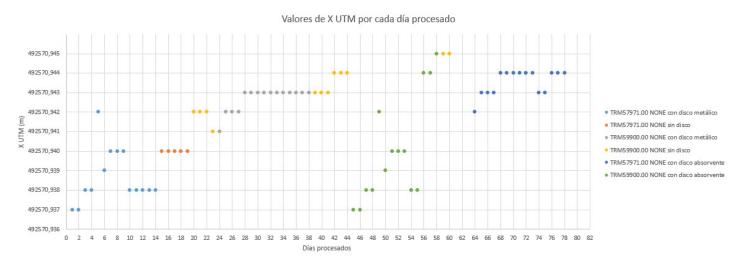


Ilustración 18 - Valores obtenidos de X UTM para cada día que ha sido procesado

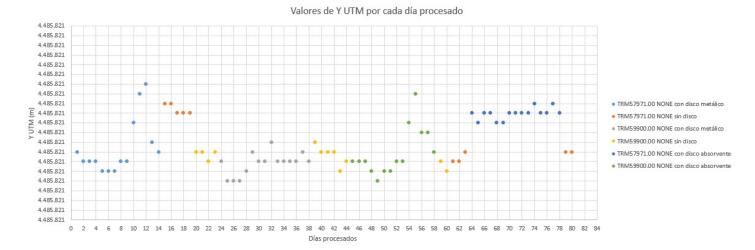


Ilustración 20 - Valores obtenidos de Y UTM para cada día que ha sido procesado



Ilustración 19 - Valores obtenidos de altura elipsoidal para cada día que ha sido procesado

Conclusiones

Se ha podido comprobar cómo la antena TRM57971.00 NONE tiene un diseño y prestaciones que le hacen más vulnerable al efecto del *multipath*. La antena TRM59900.00 NONE en cambio, no presenta grandes variaciones provocadas por este efecto, debido a su construcción y al diseño *choke ring*.

Las desviaciones de la altura elipsoidal son buenas en ambas antenas, pues se sitúan por debajo del medio centímetro (<0.005 m), sin embargo la desviación total de la altura elipsoidal de todas las posiciones de la antena TRM57971.00 NONE (*Zephyr*), es de 0.013 m, y la de la TRM59900.00 NONE (*choke ring*) es de solo 0.002 m, es decir unas 6.5 veces mejor si disponemos de plano de tierra y tecnología choke ring.

Cuanto más cerca se sitúa el disco metálico de la parte inferior de la antena, presenta mayores variaciones en las coordenadas y por lo tanto del *multipath*. Esto puede deberse a que el disco, cuanto más cerca se encuentra, más intensidad de señal es recogida y reflejada hacia la parte inferior de la antena, que si no dispone de estructura *choke ring* o plano de tierra, se verá más afectada este efecto.

La no orientación de la antena con el norte así como una pequeña inclinación tiene una ligera influencia en la planimetría que ha podido ser detectada en la gráfica de la variación de la latitud y en la coordenada Y UTM.

En cuanto a los resultados obtenidos con los discos de material absorbente de L1, existen dudas respecto a su eficacia, ya que los resultados son, en líneas generales, similares a los obtenidos con el disco metálico. Existe también la posibilidad de que el agua depositada en su superficie y la degradación del material debido a la lluvia hayan provocado un efecto rebote, con lo que la influencia del *multipath* sea mayor. Solo así se podría explicar el aumento de dispersión en los datos de la antena TRM59900.00 NONE (choke ring) con respecto a la antena TRM57971.00 NONE (*Zephyr*).

Bibliografía

Berglund, H. (2013). GNSS Antenna Sensitivity to Site Dependent Error Sources.

Farjas, M. (s.f.). Aplicaciones Topográficas del G.P.S. . En M. Farjas, *Métodos Topográficos*.