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1 Introduction.

The counterweights of a radiotelescope are the structure in charge of compensating the weight
of the parabolic surface and its backup structure. The purpose is the reduction of the torque
that the servomotors have to generate while moving in elevation. They are a metallic structure
with a ballast at the free end and connected to the backup structure in the opposite side.
Between both ends the counterweights are fixed to the fork through the elevation bearings. In
the case of the 40m radiotelescope of Yebes, the counterweight is a prismatic box with a
complex structure inside to achieve the required stiffness.

Any structure is exposed to ambient temperature changes and to mechanical strains due to the
forces it supports. Both effects produce a deformation of the structure. On one side, the
change of the external temperature produces a change in the dimensions. On the other side,
the forces on the structure create internal tensions that, due to the elasticity of the materials,
produce a deformation of its shape.

This report defines a model for the static deformation in the vertical plane of the
counterweight structure using the classical theory of strength of materials. This deformation is
principally caused by changes of temperature and by gravity. Action of wind and tensions
generated by the connections with the elevation bearing and the backup structure of the
antenna are ignored. The transient deformation due to changes of acceleration in both axes is
not the scope of this report

The main application of this study is to assess the amplitude of the systematic relative
movement affecting the survey observations of targets located at the free end of the
counterweights. The observation of these targets, while the radiotelescope is turning, is needed
in order to estimate the invariant reference point of the radiotelescope [REF-1]. The
counterweights were chosen as they turn similarly, but inversely, to the radiotelescope dish
and because they are likely less prone to deformation. Yet, the amplitude and behavior of this
deformation needs to be evaluated.

2 Description of the counterweights.

The 40m radiotelescope of Yebes has two identical counterweights, one at each side of the
fork. They can be divided in three sections: the ballast carrier, the cantilever arm and the
connection structure. The ballast carrier contains the ballast for compensating the weight of
the backup structure and parabolic surface. The cantilever arm connects the ballast carrier with
the elevation bearing. Finally, the connection structure is the section between the elevation
bearing and the backup structure. The connection structure is not in the scope of the study, and
only the structure between the elevation bearing and the free end of the counterweight is
considered.

The structure of the counterweight is completely made of steel. It consists in a closed prismatic
box with a lot of beams, plates and reinforcements inside for strengthening purpose. Apart
from the metallic structure, the ballast carrier has a space which contains the ballast fixed to
the structure. This ballast is a solidified mixture of concrete and small pieces of steel.

Each counterweight of the radiotelescope can be considered as a structure tilted the elevation
angle ¢ and fix at the point E where it is anchored to the elevation bearing. The elevation
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bearing is supposed to be an invariant point, with no movement and no rotation. The mass of
both sections are different and too high, specially for the ballast carrier, to neglect the action of
gravity. This action can be assumed as vertical and uniform forces along the length of each
section. This situation is represented in Figure 1, where section A is the cantilever arm and
section B the ballast carrier.

Any cross-section of the counterweight is considered symmetrical with respect a line that
halves the section perpendicularly to its longer side. Let define the counterweight axis as the
straight line perpendicular to the cross-section at the middle points of that axis of symmetry.
The counterweight position is then defined by the counterweight axis, denoted as the dash and

point line in Figure 1.
N % |
E WL X

axis of symmetry - A N“\‘\LLL o
~_ of the cross-section —
~ | — B 3
- <{_ —
\
~
counterweight axis

Figure 1. Cantilever simplification.

In Annex | there are two drawings of the counterweight. The first one shows the external
appearance and dimensions, and the second one shows the internal structure with some
longitudinal cross-sections.

3 Deformation by ambient temperature changes.

Any object experiments a change of its dimensions due to change of its temperature. Let
suppose a slowly change of ambient temperature and a uniform heat transmission into the
object. Then, a three-dimensional object will experiment a volumetric deformation given by the
following expressions:

Al, = ar-L,-AT

Aly == aT‘Ly'AT

Al, = ay-L, AT
where L : original length for each axis

ar: coefficient of linear thermal expansion.
AT : difference between current temperature and temperature for the given L.
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L
— x

Al

-y

)

Figure 2. Expansion due to change of ambient temperature.

Assuming the dimensions of the structure for an ambient temperature of 25 °C, the change of
length by ambient temperature is:

Al= ar L (Tamp — 25 °C) (1)

Only the deformation along the longitudinal axis of the counterweight will be taken into
account since it is the only that contributes to the deformation along the counterweight axis.
For calculating the deformation at a point out of the counterweight axis, the transverse
deformation should be also taken into account.

4 Deformation by gravity.

The action of gravity in any body involves a vertical force towards the surface of the Earth. The
intensity of the force depends, among others factors, on its mass. Normally the action of gravity
in a structure is neglected compared with the external forces it has to support. In the case of
the counterweight, the ballast carriers are designed to compensate the weight of the parabolic
structure, and their mass are considerable. The cantilever arms are designed to support the
ballast carrier, and that implies a heavy structure. Therefore, the structure of the
counterweights only supports the gravitational forces in its own mass.

Moreover, the cantilever arm has to support the ballast carrier. This involves an additional
force applied at the end of its length, which can be represented as a pure moment plus a
vertical downward force. This means more stress and an increase of the deformation in this
section.

To study the deformation in the counterweight, any force under study must be decomposed in
the longitudinal and perpendicular axes to the counterweight axis as shown in Figure 3. The
longitudinal component produces a tension that elongates the structure, and the perpendicular
one produces a shear and a moment that bend the structure. The resultant forces are:

Longitudinal force: F, =F -siné
Transversal force:  Fy =F - cosé

Where £ is the elevation of the antenna.
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-y

Figure 3. Decomposition of the weight.

4.1 Deformation by tension.

A beam under the action of a normal force to its cross-section is said to be strained. When the
force tries to lengthening the beam it is said to be under tension, and when the force tries to
shortening the beam it is said to be under compression. In any of these situations the beam
experiment a change of its length given by the Hooke’s law:
F-l
°=1E
Where F: normal force to the beam
I: length of the beam.
A : area of the cross-section
E: modulus of elasticity of the material

Now, consider a vertical beam with length / supported at the upper side. At the bottom the
beam support a force Q, Any moment applied on the beam is not considered at this moment
because it does not create a uniform longitudinal tension. The weight P of the beam is too high
to be neglected. The situation is shown in Figure 4.

dy

t(y)

Figure 4. Structure under tension.

A section with thickness dy at a distance y from the top surface supports a tension force t(y)
due to Q and the weight of the beam behind the section:
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t)=p-U=-y)+Q
Where p : weight per unit length = P/I.
So the elongation dé of the section is:

_t-dy p-(U-y)+Q
dd=—rF = A-E dy

The total elongation is the sum of all differential elongations:

(e U=-p+Q 1
5‘L e Y _A_[

Taking into account the tilting of the beam as shown in Figure 3:
l (P -siné
A-E 2

(2)

6= +Q-sin€>

4.2 Deformation by bending.

Perpendicular forces to a beam produce a moment between the point of application and the
supports which tries to bend the beam, causing a deformation in the plane of application of the
forces. Considering an horizontal beam, the bending in a point m of the beam is defined by the
angle @ of the tangent at that point and the deflection f from the point to the horizontal axis of
the beam, as shown in Figure 5. It is assumed that any cross-section of the original beam
continues plane after the bending. The bending at a point of the cantilever is defined by the
following equations:

O(m) = I [rad]

m m

sinf(x) - dx = j O(x) - dx
0

df =dx-sin@ = f(m) =f
0
Where E : modulus of elasticity of the material
I, : moment of inertia for the cross-section in m, defined later in page 7.

M(x) : moment supported by the section in x.

Figure 5. Bending of a beam.
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Now let calculate the moment for any section at a distance x of the support. Consider a
cantilever supporting a pure moment M and a vertical force Q at the free end. Consider also
that the weight of the cantilever is not depreciable and is assumed as a uniform distributed
load along the cantilever of intensity p per length unit. This situation is shown in the following
drawing:

/1)
[LLLIANLLL L]
4

Q

Figure 6. General situation of a cantilever.

The moment at a point m is the sum of the moment M, the moment due to the force Q, and the
moment due to the weight from m to the free end of the structure:

i (l_m)z
M(m)=M+Q~(l—m)+fx-(p-dx)=M+Q-(l—m)+p-T
m
So the angle at a point x is:
(Il —x)?
G(x)—E 7 -x)+p- > cdx =
_ 1 P 2 X
“EL [(M+Q D-x—Q-= +2 <z x—Lx? 4+
And at the end of the structure is:
o) = —— M- 140 12— l2+p Bl L (yase by, b
“E-L ¢ Ot 3T EL Q5P 5

The deflection at the end of the structure is:

x? p x3
= a2 =] 2. =
f EL Q= +5 <l x lx+3> dx
x? x> p [, x* 3 x|
—E.IZ'[(MW'”'TQ'TE (‘ 7 b ?*12)]

1 Mlz+ 3 l3+p * l4+l4 1 Mlz+ l3+ 1*

T E-I 202Q622312_E-IZ e gtpg
Taking into account the tilting of the counterweight as shown in Figure 3, and using degrees instead of
radians:

o) =

voiro.l oL 180 (3)
EL Q-5 cos§+p-p-cosé | —- [deg]

B 12 13 14 (4)
fi) = -<M~?+Q-§-cosf+p~§-cos§>

E-I,
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421 Moment of inertia.

The moment of inertia is a factor that appears when studying the bending of beams. It depends
only on the shape and dimensions of the cross-section of the beam along the longitudinal axis.
The moment of inertia from an axis is defined as the sum of any small element of area
multiplied by the square of its distance to such axis:

,Z:fysz (5)

dy

Figure 7. Calculus of the moment of inertia from axis z.

This factor will be calculated for each section of the counterweight.

4.3 Deformation by shear.

Perpendicular forces applied to a beam involve a transverse shearing stress along the beam.
Consider a cantilever supporting a force F at a point. Figure 8 shows the deformation due to
shear in a beam. At the right there is the effect of shear in a section dx wide between the
support and the force, where R represents the reaction to F in the other side of the section. The
shear causes a displacement of the side where the force is applied, causing a deflection
deformation. This deformation is normally depreciated compared with the one caused by the
bending moment, but in case of high loaded and short beams it should be taken into account.

The deflection at a point mis:

s(m) = % ; V(x)-dx




CAY Vertical deformation of the counterweights in the 40m radiotelescope

Where k: shape factor of the cross-section
A: area of the cross-section
G: shear modulus of the material

V(x): shear in the cross-section at x

V(x) is calculated as the algebraic sum of the external forces at the left side of the cross-section
under study. Considering the general situation represented in Figure 6 (page 6), the shear at the
right of a point x is:

Vx)=Q+p-(U—x)

So the deflection at the end of the cantilever is:

Al
s(l)—— fQ+p (l—x)- dx—— [Q x+p- (l x_x_)]
0

2
k l2
Taking into account the tilting of the cantilever as shown in Figure 3:

S() = k- cosf (Q tp E) (6)

-G 2

4.3.1 Shape factor.

The shape factor tries to evaluate which area of the cross-section has an effective resistance to
the shear deformation. The higher the factor is, the less resistance of the cross-section and
therefore the higher deformation of the beam. It depends on the shape of the cross-section.
The following equation can be used for its estimation:

a-A-d
k=
Where: a: area beyond the neutral axis % 7

A : area of the cross-section Gravity center Z
d : distance of the center of gravity of t d

the area a to the neutral axis. T T T T T T Neutral axis
I, : moment of inertia of the cross-

section
t : total thickness of the section I

Figure 9. Shape factor data in typical | beam.

The neutral axis is that one where the longitudinal fibres of the beam keep the original length after
bending. For symmetrical beams it is equivalent to the axis of symmetry. In this case A = 2 - g, so the
shape factor is:

A?-d (7)

5 Modeling the counterweight.

The following parameters must be determined for each section of the counterweights, in order
to calculate the deformations of the structure:
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e Length (/).

e Area(A).

e Total weight (P).

e Weight per unit length (p).

e Coefficient of linear thermal expansion (a).
e Elastic modulus (E).

e Shear modulus (G).

e Shape factor (k).

e Moment of inertia (/).

From the documents of the antenna it can be assumed that the metallic structure of the
counterweight has a weight per length unit about 3.115,82 kg/m along all the cantilever.

5.1 Cantilever arm.

The parameters of the structure are taken from the antenna document and properties of the
steel, except the moment of inertia that is calculated in the next paragraph. The results are the
following:

/I = 5,840 m

A= 0,3995 m’

P= 18.196,39 kg
p= 3.115,82 kg/m
a=1,2-10"°C?
E= 200 - 10° kg/m?
G = 79 - 10° kg/m?>
I,= 2,8870 m*

k= 2,0736

5.1.1 Properties of the cantilever arm.

The following data are taken out from the documentation of the radiotelescope:
Length =5,84 m
Weight per unit length = 3.115,82 kg/m

So the weight is = 3.115,82 - 5,84 = 18.196,39 kg

Because the structure is completely made of steel, it takes the following properties from that
material:

E = 200 kg/m”
Density = 7.800 kg/m’
a=1,2-10°°C"

The area of the cross-section can be calculated from the total weight, the length and the
density of the steel;
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_ volume _ mass 18.196,39

B - = = 2
length ~ density - length  7.800 - 5,84 0,3995m

5.1.2 Moment of inertia of the cantilever arm.

The moment of inertia depends heavily on the shape of the cross-section of the structure. The
structure has several plates and beams diagonal and perpendicular to the cantilever axis, some
of them with holes to allow access to the interior. Such complex structure makes the most of
the cross-sections be unique along the counterweight. In order to simplify the calculations, the
same cross-section must be supposed along all the structure. Four conditions have been taking
into account for determining the simplified cross-section:

e The area of material must be according to the value previously calculated.

e The cross-section is symmetrical.

e There are six plates along the structure parallel to the longitudinal and to z axes of the
counterweight.

e The thickness of the external walls is 15 mm, the real thickness increased due to the L
beams strengthening the surface of the walls.

Then, the thickness of each horizontal plate is:
A 1 1
e = (E—AA—Z-hz-e2)~§~W_—M= 10,9 mm
Where A, is the area of the section A (see Figure 11):
4, = W_h B w'.h'
2

The resultant cross-section is shown in Figure 10. It can be divided in simplex shapes which
moment it easy to calculate.

= 0,0359 m?

w=1,400m
A
_ e2=15mm
% h1=4,5615 m
) h2=3,753 m
e1=10,9 mm h3=3,7421m
ha=2,2432 m
———
hs=0,7443 m
z

Figure 10. Upper half of the cross-section of the cantilever arm.

10
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The total moment will be the sum of all partial moments. Lets divide the shape in a V shape A,
two rectangles B and three rectangles C at different distances from axis z as shown in the
figure.

The moment of inertia of A can be calculated as the moment of a solid triangle abc minus the
moment of a triangle a’b’c’ as shown in the Figure 11.

y b
. hy = 4,5615 m
’ w =1,400 m
. e=0,015m
c h’ w =w-e—e/sin30=1,3550m
7 o i h' =h, +W -tg 30 = 4,5353 m
.

Figure 11. Triangular shape of the cross section.
The width of any infinitesimal section parallel to the base and thickness dy for triangle abc is:

hy—y
idth = ———-
wi n—h, w

So the moment of inertia of the triangle from axis z is:

h
; =fh1y2.(h1_y'W)'dy= w [hl-y3_y_4]1=
zryabc n, h1 — hz h1 —h, 3 4

ha
w mt oot hy-hy®  hyt c(h*—4-hy-h>+3-hyt
_ (2t ) (22 T2 :W(1 1z 2):9,1779m4
hl_hZ 3 4‘ 3 4 12'(h1—h2)
In the same way, the moment of the triangle a’b’c’ from axis z is:
w' - (R —4-h'-hy® +3-hy?)

Lnyabicr = = 0o 4
yarbre TR 8,5566 m

So, the moment of inertia of the shape A from axis z is:
I1a = Iyape = Iyarpicr = 0,6213 m*
The moment of inertia of a rectangle w wide and with lower side h;, and upper side hy from de
axis is:
hy w- (hy® = h?)

I, = y*ow-dy =
hy, 3

So the moment of inertia of one rectangles B is:

e, h,>
I = 232 = 0,2643 m*

And the moment of inertia of each rectangles C are:

11
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(w—2-¢e,) (hy® —h5?)

IZCI = 3 = 0,2097 m4
w—2-e)((hy +e)?—h,°
Ic2 =( 2) ((34 ) 4 )= 0,0755 m*
w—2-e,) ((hs +e)—hs’
I,c3 =( 2) ((35 ) > )= 0,0084m*

Taking into account that the above calculations were for the upper middle of the cross-section,
the total moment of inertia of the cross-section is:

1,=2-(a+2 L+ Lici+ Licy + Lyc3) = 2,8870 m*

5.1.3 Shape factor of the cantilever arm.

The height of the center of gravity of Figure 10 can be calculated as that horizontal line that has
the same effective area above and below. This corresponds to a height of 2,2535 m from axis z.

The total thickness of the cross-section is twice the thickness of the external walls, that is,
0.03m.

So the shape factor of the cantilever arm is (see equation (7)):

_0.3995%-2.2535
~2-2,8870-0.03

=2,0763

5.2 Ballast carrier.

The dimensions and weights of the ballast carrier are obtained from the technical documents of
the radiotelescope. The physical coefficients are calculated taking into account the mixture of
materials of the ballast. All parameters are calculated in the following paragraphs. They are:

/I=31m
A= 8,6163 m’
P= 104.759 kg

p= 33.793 kg/m
a=1,2-10°°c?

E= 64,0493 -10° kg/m>
G = 17,336:10% kg/m’
I,= 50,5234 m"

k= 1,4918

5.2.1 Properties of the ballast carrier.
From the documentation of the radiotelescope:
The required weight of the ballast for a correct compensation is 95.100 kg.

The length of the ballast carrier is 3,1 m

12
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The weight of the structure per unit length 3.115,82 kg/m
So the weight of the structure is Wy, = 3.115,82 - 3,1 = 9.659,04 kg

Taking into account the density of steel, the volume of the structure is Vi, = 9.656,04 / 7.800 =
1,238 m*

The weight of the ballast carrier is P=95.100 + 9.659,04 = 104.759 kg
And the weight per unit length is p = 104.759 / 3,1 = 33.793 kg/m

The area of the cross-section can be calculated from Figure 12 as the area of the rectangle B
plus the area of the triangle A minus the grey area;
w - (hy — h3) _

A=2- -h
<W 3+ 2

e hy —e-h2> = 8,6163 m?

So the volume of the ballast carrieris Vg =A - [ = 26,7105 m>

The ballast is a mix of small pieces of steel and concrete. Its properties are estimated according
to the rule of mixtures. This rule predicts the properties as the volume weighted average of the
components properties. It is assumed that there is not any air gap into the mixture and that the
mix is homogeneous in all the ballast.

The properties of each component are:

Steel Concrete
Modulus of elasticity Es =200-10° kg/m? Ec = 30-10° kg/m®
Shear modulus Gs=79-108 kg/m2 Gc=12,5-108 kg/m2
Density ps = 7.800 kg/m’ pc = 2.000 kg/m’
Coefficient of thermal expansion as=1,2-10°°C? ac=1,2-10°°c*t

The first step is to calculate the proportion of the volume for each component in the mixture.
For this calculation, the steel of the structure is also taken into account.

The volume of each component in the ballast carrier is:

%
Steel : ps-Vo+ pc-(Vg—Vs) =P = Vs =88514m3 = vg= V—S = 0,3314
B

Concrete : vp =1— vg = 0,6686
According to the rule of mixtures, the properties are the following:

e The modulus of elasticity depends on the orientation of the steel particles with respect the
counterweight axis. For longitudinal orientation (subindex L) the coefficient adopts its
maximum value, and for transverse orientation (subindex T) it takes the minimum value. A

random orientation of the particles in the mixture can be assumed. For this reason, the average of
both values is adopted as the most approximate value:

EL = ES * Vg + EC Ve = 86,3348 . 108 kg/mz

_ Es - Ec _ 8 2
E; = = 41,7638 - 10® kg/m
ES * vC + EC * 175
E,+E
E=-t - L = 64,0493 - 108 kg/m?

e The shear modulus is:

13
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_ Gs - Gc
_Gs'vc'l'Gc'vS

= 17,3360 - 108 kg/m?

e The linear thermal coefficient is taken the same for both materials, so the coefficient of the
mixture will be that value.

5.2.2 Moment of inertia of the ballast carrier.

Figure 12 shows the simplified shape of the cross-section of the ballast carrier. Dimensions have
been taken from the radiotelescope documentation. It can be divided in simplex forms which
moment easy to calculate. The total moment will be the sum of all partial moments. Lets divide
the shape in a triangle shape A, two rectangles B and three rectangles C at different distances
from axis z. The moment is the sum of the moments of both shapes minus the moment of the
empty area denotes grey in the figure.

w =1,400 m

e=185mm

h:=4,5615 m
h:=4,420 m

hs=3,753 m

Figure 12. Upper half of the cross-section of the ballast carrier.
The moment of inertia of the triangle A from axis z is:

_ W'(h14_4'h1'h33+3'h34)_e'(h23_h33)

I, = =7,1127 m*
zA 12 ‘ (hl - hg) 3 m
The moment of inertia of shape B is:
w—2-¢€) hs’
I,p = ( 3 ) hs = 18,149 m*

Taking into account that the above calculations were for the upper middle of the cross-section,
the total moment of inertia of the whole cross-section is:

I,=2-(I;4 +1,5) = 50,5234 m*

5.2.3 Shape factor of the ballast carrier.

The height of the center of gravity of Figure 12 can be calculated as that with the same effective
area above and below. This corresponds to a height of 2,0915 m from axis z.

The total thickness of the cross-section is:

t=w—-—2:-¢e=1,03m

14
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So the shape factor of the cantilever arm is (see equation (7)):

8,6172 - 2.0915

= 2.505234. 103 L4918

6 Evaluation of the deformation.

Consider the position of the counterweight defined by the vector v. Consider a longitudinal
deformation 6 and a transversal deformation f of the counterweight as shown if Figure 13. Then
the deformation of the counterweight is represented by the vector €.

s 4

<

Yy

Figure 13. Deformation of the counterweight.

6.1 Deformation by ambient temperature change.
In paragraph 3 (page 2) the deformation by ambient temperature changes was defined as:
Al == aT . l . AT

The deformation by stress appears more quickly that the one by change of ambient
temperature. Therefore, in the calculation of the elongation by change of ambient
temperature, the initial length of the structure should be the one after the elongation by
tension. However, the elongation by tension so small to introduce changes in the elongation by
ambient temperature changes, so the original length will be used in the formula.

1. For the cantilever arm the parameters are:
0 L:length of the structure =5,84 m
0 oy : coefficient of linear thermal expansion=1,2 - 10°°c?

Replacing the values in the equation:
Alga = 0,0701 - AT [mm]

2. For the ballast carrier the parameters are:
0 L:length of the structure=3,1 m
0 oy : coefficient of linear thermal expansion=1,2 - 10°°c?
0 AT :change of ambient temperature = 25 °C.

Replacing the values in the equation:

Alge = 0,0372 - AT [mm]

15
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6.2 Deformation by tension.

In paragraph 4.1 (page 4) the deformation by tension was defined as:

)

1 P-siné
TAE ( 2
1. For the cantilever arm the parameters are:

0 [:length of the structure = 5,84 m

0 A': Area of the cross-section = 0,3995 m?

0 E: Elastic coefficient = 200-10° kg/m

0 P :Weight of the structure = 18.196,39 kg

0 Q: Weight of the ballast box = 104.759 kg

o ¢£:tilting angle = elevation angle of the antenna.

+Q-sin$>

Replacing the values in the equation:
6CA = 0, 0833 - Sinf [mm]

2. Forthe ballast carrier the parameters are:
0 [/:length of the structure = 3,100 m
0O A : Area of the cross-section = 8,6163. m2
0 E: Elastic coefficient = 64,0493 -10® kg/m
0 P : Weight of the structure = 104.759 kg
0O Q=0kg
o0 ¢£:tilting angle = elevation angle of the antenna.

Replacing the values in the equation:

6gc = 0,0029 - sin§ [mm]

6.3 Deformation by bending.

In paragraph 4.2 (page 5) the deformation by bending was defined by an angle 6 and a
deflection f. given by the equations:

o= (m11q.L il 0
= T Q-5 -cos§ +p-=-cosé |- — [deg]

1 2 3 l4
fi) = E_IZ-<M~E+Q-§-cos§+p-§-cosi>
1. For the cantilever arm the parameters are:

0 |:length of the structure = 5,840 m

0 E: Elastic coefficient = 200-10% kg/m2

0 I, : Moment of inertia = 2,8870 m*

O p: Weight per unit length = 3.115,82 kg/m

0 M :Moment at the end of the structure.

0 Q: Vertical force at the end of the structure

0 ¢ :tilting angle = elevation angle of the antenna.

The moment M in the connection structure is generated by the weight of the ballast carrier.
This moment is the following:
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2 2

lsc lpc 3.1
M = f x - (ggc - Ccosé -dx) = qgc-cosé == 33.793 - cosé —= 162.375 - cos¢ [kg - m]
0

Q is the weight of the ballast box = 104.759 kg

Replacing in the equations:
Ocqa = 0,0027 - cosé [deg]
fca=0,1763 - cos¢ [mm]

2. Forthe ballast carrier the parameters are:

| : length of the structure = 3,100 m

E : Elastic coefficient = 64,0493-10° kg/m2

[, : Moment of inertia = 50,5234 m*

p : Weight per unit length = 33.793 kg/m

M : Moment at the free end = 0.

Q: Force at the freeend =0

€ : tilting angle = elevation angle of the antenna.

O O0OO0OO0o0O0ooOo

o

Replacing in the equations:
Opc = 0,00003 - cos ¢ [deg]
fec =0,0012 - cos ¢ [mm]

6.4 Deformation by shear.
In paragraph 4.2 (page 5) the deformation due to bending was defined by a deflection y as:

. 2
0= 55 (0 1403)

1. For the cantilever arm the parameters are:
0 | :length of the structure = 5,840 m
0 A: Area of cross-section = 0,3995 m?
0 G : Shearing coefficient = 79-10° kg/m2
0 k:Shape factor =2,0736
O p: Weight per unit length = 3.115,82 kg/m
0 Q: Weight of the ballast box = 104.759 kg
0 ¢ :tilting angle = elevation angle of the antenna.

Replacing in the equation:
Sca = 0,4374 - cos ¢ [mm]

2. For the ballast carrier the parameters are:
0 | :length of the structure =3,1 m
O A:area=8,6163 m?
0 G : Shearing coefficient = 17,336-10° kg/m?
0 k:Shape factor =1,4918
O p: Weight per unit length = 33.793 kg/m
0 Q: Perpendicular force at the freeend =0
0 ¢ :tilting angle = elevation angle of the antenna.

Replacing in the equation:
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Sgc = 0,0162 - cos ¢ [mm]

6.5 Total deformation.

The following table resume the contribution in millimeters of each effect in each section:

Effect Cantilever arm Ballast carrier
Elongation by AT, 0,0701 - AT 0,0372 - AT
Elongation by tension 0,0833 - sin¢ 0,0029 - sin ¢
Deflection by bending 0,1763 - cos¢ 0,0012 - cosé
Deflection by shear 0,4374 - cos ¢ 0,0162 - cosé

The total deflection of each section is the sum of its deflection by bending and by shear:
fr)ca = (0,1763 + 0,4374) - cos ¢ = 0,6137 - cos & [mm]
fr)sc = (0,0012 4 0,0162) - cos& = 0,0174 - cos& [mm]

The deflection of the cantilever arm supposes an additional tilting of the ballast carrier. Assuming this
angle very small, we can calculate the consequent deflection at the end of the counterweight as a linear
projection of the deflection of the cantilever arm. The total deflection of the counterweight is then:

leg + 1
f=fT) 'u+fT)BC=O,9569COSf [mm]
CA lCA

The total elongation of the counterweight is the sum of the elongations by tension plus the elongations
by temperature:

5:6CA+6BC+6T
5=10,0862 -sin& + 0,1073 - AT, [mm]

The following Figure shows the relationship between both deformations and the elevation of
the antenna for an ambient temperature of 25 °C, that is, AT,m, = 0 °C.
deformation [mm]
1,20 [mm == mmr e mp e
) e e e e R S

0,80 |-------f-m--mmiooooC R T e S R SRR

Deflection

R I i Y ________________________ Elongation

T S e T e SN e

0,20 oo oo x\ --------

0,00

0 10 20 30 40 50 60 70 80 90
Elevacion (&)

Figure 14. Total deflection and elongation with respect elevation.
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The modulus and angle respect the coordinate system of the deformation vector of the
counterweight are shown in Figure 15. The graphics at the right shows the modulus and angle
of the deformation vector for a null change of ambient temperature.
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Figure 15. Deformation at the free end of the counterweight.

7 Conclusions.

80

90

The change of ambient temperature in the short time at the Observatorio de Yebes is between
6 °C and 21,5 °C in a day. In the structure some measurements have given 10 °C more than
ambient temperature due to sun radiation. Therefore, the temperature in the structure can
changes between 6 °C and 31,5 °C, what means a change in the length of the counterweight
between 0,64 and 3,38 mm. In winter, the effect of temperature along a day is similar to the

effect of gravity. In summer, it can be three times greater.

The gravity deforms the counterweight depending on the elevation of the antenna. The most of
the contribution to the deformation comes from the cantilever arm. In fact, the deformation of
the cantilever arm supposes about the 96 % of the total elongation and about the 97 % of the

total deflection.
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The deformation by shear is greater than the deformation by bending. This is normal in
structures which length is comparable to its height. In fact, the deflection by shear in the
cantilever arm is more than twice the one by bending and in the ballast container about
thirteen times.

The deflection is most significant than elongation taking into account only gravitational
deformation. It is higher than elongation when the elevation is below than 85 degrees, and
more than twice below 79 degrees.

The estimation of the cross-section shape influences in the values of the moment of inertia and
shear factor, and therefore in the results. The estimation is especially complicated for the
cantilever arm, where the structure is more complex. Other estimations can be done. The most
relevant is that which is clearly less rigid than real one, so it gives an idea of a maximum value
for expected deformation. This estimation can be the one on Figure 10 without the green
rectangles C and with the real thickness for walls, which is 10mm. For this shape, the values
are:

Area=0.2 m’

Moment of inertia = 1,6 m*

Shape factor =1,44

Elongation by gravity = 0,168 - sin & mm
Deflection by shear = 0,61 - cos & mm
Deflection by bending = 0,33 - cos & mm
Total elongation = 0,171 - sin § mm
Total deflection =1,46 - cos § mm

O OO O0OO0OO0OOoOOo
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Annex |.  Drawings.
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