Equivalent Circuits of Small Size Chip Resistors up to 50 GHz

J.D. Gallego, I. López, C. Diez González, I. Malo, R. Amils

IT-CDT 2020-15

Observatorio de Yebes Apdo. 148 19080 Guadalajara SPAIN Phone: +34 949 29 03 11 Fax: +34 949 29 00 63

Change Record

Revision	Date	Affected Paragraphs(s)	Reason/Initiation/Remarks
А	2020-28-06	All	First Issue

TABLE OF CONTENTS

1.	Abstract	.4
2.	Introduction	.4
3.	Equipment	.4
4.	Calibration	.4
5.	Equivalent circuit results	. 5
6.	Photos	.7
7.	Bonding wires	. 8
8.	Model of COMPEX quartz 0102 resistor 10 Ohms	.9
9.	Model of COMPEX quartz 0102 resistor 50 Ohms	10
10.	Model of COMPEX quartz 0102 resistor 100 Ohms	11
11.	Model of COMPEX quartz 0102 resistor 1K Ohm	12
12.	Models of SOTA alumina 0202 resistor 50 Ohms	13
13.	Models of SOTA alumina 0302 resistor 50 Ohms	14
14.	Models of COMPEX quartz 0102 resistor 1K Ohm (up to 50 and 100 GHz)	15
15.	Effect of changing SOTA 0202 by COMPEX 0102 in 4-20 GHz ESO amplifier	
	model	16
16.	Conclusions	17
17.	Appendix I	18
18.	Appendix II: Datasheets	19

1. Abstract

The analysis and design of microwave circuits incorporating passive elements requires suitable equivalent circuit models that can be used to properly represent the components in CAD programs, including their parasitic effects, in the frequency range of interest. Ideally, these models should be as simple as possible and based on basic lumped elements whenever possible. We present here the models obtained in our laboratory for several types of small size (0102, 0202 and 0302) chip resistors of the type used for bonding in cryogenic microwave amplifiers. The resistors were manufactured by SOTA (State of the Art, Inc.) and Compex.

2. Introduction

In addition to the inductance of the connecting bonding wires, the small chip resistors used in cryogenic amplifiers present some parasitic elements which limit their performance. These parasitics depend on the size, layout and dielectric material used. The results of five different resistors are presented in this document. They are typical examples of thick and thin film types deposited on alumina and fused quartz substrates. The equivalent circuit has been obtained by comparison with the experimental measurements of the S parameters in a configuration that mimics the typical assembly method used in the amplifiers. The chip resistors are mounted on a copper plate and connected with short bonding wires to coplanar to microstrip transitions (figure 2) on both sides. The measurements were carried out in the 0.250-110 GHz frequency range at ambient temperature using a coplanar probe station.

3. Equipment

- Probe station mod. MPS 150 (Cascade Microtech)
- Coplanar probes mod. ACP 110-A-GSG-125 (Cascade Microtech)
- Vector network analyzer mod. PNA-X 5247 (Keysight)
- Millimeter wave controller mod. N5261A (Keysight)
- Millimeter wave heads mod. N5250CX10 (Keysight)
- Transitions from coplanar to microstrip mod. ProbePoint 0503 (Jmicro)
- Coplanar calibration substrate (ISS) mod. 104-783A (Cascade Microtech)

4. Calibration

The chip resistor measurements were obtained using a standard LRRM calibration performed with the Cascade Microtech ISS calibration substrate (Impedance Standard Substrate, figure 3) using WinCal software. With the standards used this calibration performs reasonably well in all the 250 MHz-110 GHz range sampled. It was verified with an open (probes in air) and with a long matched coplanar line (\sim 27ps) in the ISS substrate. The ISS was used in combination with an absorbing ISS holder (SN 116-334) as recommended by Cascade.

The standard LRMM method yields a calibration referenced to the end of the coplanar probes. As the objective was to measure the resistors, the reference plane had to be shifted to the end of the coplanar-microstrip transitions. This was performed with a built-in feature of the PNA-X which allows de-embedding circuits characterized by their S-parameter files. Appendix I contain some information of the models used to generate the S-parameter files of the transitions. Additional information can be found in a previous Technical Report¹.

¹ J.D. Gallego, C. Diez González, I. López, I. Malo, "Effect of Source Bonding Wires in HEMT devices", CDT Technical Report 2016-18. <u>http://icts-yebes.oan.es/reports/doc/IT-CDT-2016-18.pdf</u>

5. Equivalent circuit results

The measurements were performed in the complete 250 MHz-110 GHz frequency range accessible to the measurement equipment. However, a good fit with a simple equivalent circuit could only be obtained in the 0-50 GHz range. The circuit used is presented in figure 1 and the values of the components for the different resistors are shown in table I.

The equivalent circuit fitted to the Compex resistors was intentionally forced to have the same values of the parasitic elements for all the resistances². This allows using the same CAD equivalent circuit, changing only the numerical value of one component, for different resistors. During the fitting process it became clear that some of the parasitics have different importance depending on the resistor value. For example, L_ser is dominant for low resistor values while C has more influence for high values.

The value of the Q of the capacitor was introduced in an unfruitful attempt to obtain a better fit at f > 50 GHz. In the final version its value was fixed to 1000 (almost no loss), but it could be omitted (Q = ∞ , lossless capacitor) if desired.

Figure 1: Equivalent circuit used for the resistors, including external bonding wires. The chip resistor intrinsic components are enclosed in the rectangle.

R (Ohm)	Size (mil)	Туре	L_ser (nH)	C (pF)	L_in (nH)	L_bond (nH)
10	20x10x10	Compex Thin, QZ	0.24	0.014	0.018	0.115
50	20x10x10	Compex Thin, QZ	0.24	0.014	0.018	0.115
100	20x10x10	Compex Thin, QZ	0.24	0.014	0.018	0.115
1000	20x10x10	Compex Thin, QZ	0.24	0.014	0.018	0.115
50	20x20x10	SOTA Thin, AL	0.10	0.048	0.014	0.115
50	30x20x15	SOTA Thick, AL	0.22	0.067	0.037	0.140

TABLE IParameters of the equivalent circuit of the resistors measured

 $^{^2}$ The S parameters obtained with completely free parasitic elements are almost identical in the 50 GHz frequency range.

Figure 2: Drawing of Jmicro coplanar to microstrip transition used for the measurements.

Figure 3: Calibration substrate used for LRRM calibration on the coplanar reference plane in the 0.250-110 GHz frequency range.

Equivalent Circuits of Small Size Chip Resistors up to 50 $\,{\rm GHz}$

6. **Photos**

COMPEX 0102 10 Ohm (QUARTZ 10 mil)

COMPEX 0102 50 Ohm (QUARTZ 10 mil)

COMPEX 0102 100 Ohm (QUARTZ 10 mil)

COMPEX 0102 1K Ohm (QUARTZ 10 mil)

SOTA 0202 50 Ohm (ALUMINA 10 mil)

SOTA 0302 50 Ohm (ALUMINA 15 mil)

7. Bonding wires

R (Ohm)	Type (Size)	Long BW 1 (um)	Sep BW 1 (um)	Long BW 2 (um)	Sep BW 2 (um)
10	0102	210	60-90	220	50-100
50	0102	160	30-90	180	60-80
100	0102	180	40-80	230	50-60
1000	0102	195	50-70	170	50-60
50	0202	250	50-150	250	50-150
50	0302	250	50-150	250	50-150

TABLE II

Length and separation of bonding wires

Maximum height of bonding wire over the resistor: 10 um Bond wire diameter: 17.5 um

8. Model of COMPEX quartz 0102 resistor 10 Ohms

9. Model of COMPEX quartz 0102 resistor 50 Ohms

10. Model of COMPEX quartz 0102 resistor 100 Ohms

freq (1.000GHz to 50.00GHz)

freq (1.000GHz to 50.00GHz)

11. Model of COMPEX quartz 0102 resistor 1K Ohm

freq (1.000GHz to 50.00GHz)

freq (1.000GHz to 50.00GHz)

12. Models of SOTA alumina 0202 resistor 50 Ohms

13. Models of SOTA alumina 0302 resistor 50 Ohms

14. Models of COMPEX quartz 0102 resistor 1K Ohm (up to 50 and 100 GHz)

- 1) Up to 50 GHz
- 2) Up to 100 GHz

Rev. A

15. Effect of changing SOTA 0202 by COMPEX 0102 in 4-20 GHz ESO amplifier model.

 \approx +2 dB of gain \approx -0.4 K of noise

3) INITIAL:

4) WITH COMPEX 0102 RESISTORS (No tuning):

Observatorio de Yebes Apartado 148, 19080 Guadalajara, SPAIN

16. Conclusions

The results obtained show that a very simple circuit model for the resistors is a good approximation to the measurement up to 50 GHz, but significant differences appear at higher frequency (see example in section 14). It was not possible to fit to a simple model which could represent the component in the complete 110 GHz range measured. The new Compex 0102 quartz chip resistors show smaller parasitics than the larger SOTA alumina resistors, as can be easily seen by comparison of the S parameters of 50 Ohm resistors. The fact that the Compex parts are smaller and built on quartz substrates has a remarkable impact in the reduction of the parasitic capacitance. The effect of the parasitics may have an important influence in the performance of the amplifiers. As an example, section 15 presents the modeled effect of the substitution of all the 0202 SOTA resistors by 0102 Compex parts of the same value in a model of a wide-band amplifier (4-20 GHz ESO simple deign). An overall increase of 2 dB in gain and a reduction of 0.4 K in noise was observed, although the amplifier may need a re-optimization to perform a fair comparison.

17. Appendix I

Model used for de-embedding J-micro coplanar to microstrip transitions.

(Half of the model is used to generate S2P files used for de-embedding)

18. Appendix II: Datasheets

		lote:	Selection	Charts of	are fo	or guida	nce only	. All Comp	ex parts	are built	to speci	ific custo	mer requ	irements.	
M	icrowav Ran Case Si	e Re ge k ze (C	sistance by Dhms)	Stand	dard Ran se Siz	Resista ge by ce (Ohm	nce ns)		м	Minimur Handl laterial d	n Powe ing by and Size	r ,		Pow Hand Cod	rer ling les
1	Case Size Mils	Min	Max	Case Size Mils	Min*	Max Alumina	Max Silicon	Case Size Mils	Alumina C-35	Silicon C-22	AIN C-28	BeO C-25	Quartz C-20	Watts	Code
	12X9	4	500	12X9	1-3	25K	150K	12X9	50 mW	50 mW	200 mW	400 mW	10 mW	10 mW	А
	14X12	4	750	14X12	1-3	40K	200K	14X12	100 mW	100 mW	400 mW	800 mW	20 mW	20 mW	В
	20X10	6	1000	20X10	1-3	60K	250K	20X10	100 mW	100 mW	400 mW	800 mW	20 mW	50 mW	С
	15X15	4	1000	15X15	1-2	70K	500K	15X15	100 mW	100 mW	400 mW	800 mW	20 mW	75 mW	D
	20X20	4	1250	20X20	1-2	125K	750K	20X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	100 mW	E
	30X20	4	2500	30X20	1-2	200K	1M	30X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	150 mW	F
	40X20	4	3750	40X20	1-2	250K	1.5M	40X20	250 mW	250 mW	1.0 W	2.0 W	50 mW	250 mW	G
	30X30	2	2500	30X30	1-2	275K	2M	30X30	250 mW	250 mW	1.0 W	2.0 W	50 mW	500 mW	Н
	35X35	2	3000	35X35	1-2	300K	3M	35X35	250 mW	250 mW	1.0 W	2.0 W	50 mW	750 mW	J
	40X40	2	3750	40X40	1-2	500K	5M	40X40	350 mW	350 mW	1.4 W	2.8 W	70 mW	1 W	K
	50X25	3	5000	50X25	1-2	300K	3M	50X25	350 mW	350 mW	1.4 W	2.8 W	70 mW	2 W	L
	60X30	3	5000	60X30	1-2	500K	6M	60X30	500 mW	500 mW	2.0 W	4.0 W	100 mW	3 W	N
	50X50	2	5000	50X50	1-2	700K	7M	50X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	4 W	P
	60X60	2	5000	60X60	1-2	2M	15M	60X60	500 mW	500 mW	2.0 W	4.0 W	100 mW	5 W	Q
	80X50	2	5000	80X50	1-2	2M	20M	80X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	10 W	S
	100X50	2	5000	100X50	1-2	2.5M	25M	100X50	500 mW	500 mW	2.0 W	4.0 W	100 mW	15 W	T
	120X60	2	5000	120X60	1-2	3M	30M	120X60	750 mW	750 mW	3.0 W	6.0 W	125 mW	20 W	V
	100X100	2	5000	100X100	1-2	3.5M	35M	100X100	750 mW	750 mW	3.0 W	6.0 W	125 mW	25 W	W

Bondir	ng Pad Metallizations	Temperature Coefficient of Resistance		
Metallization		Code	Parts Per Million (PPM)	Code
Pd/Au Top Side	Bare Bottom Side	А	±150	Q
Pd/Au Top Side	Ta/Pd/Au Bottom Side	D	±100	V
Pd/Au Top Side	Ti/Pt/Au Bottom Side	L	±50	W
Ni/Au	Application Specific	Р	± 25	Х
TIW/Au Top Side	Bare Bottom Side	E	±10	Y
TIW/Au Top Side	Ta/Pd/Au Bottom Side	F	±5	Z
Window	Silicon Only	W		
Custom	Application Specific	х		

Testing Performed		
Visual Inspection	MIL-PRF-55342 MIL-STD-883	Para 4.8.1 Method 2032
Mechanical Inspection	MIL-PRF-55342	Para 4.8.1
DC Resistance	MIL-PRF-55342 MIL-STD-202	Para 4.8.2 Method 303
Resistance Temperature Characteristic (TCR)	MIL-PRF-55342 MIL-STD-202	Para 3.16 Method 304
Short Time Overload	MIL-PRF-55342	Para 3.12
High Temperature Exposure	MIL-PRF-55342	Para 3.13
Thermal Shock	MIL-PRF-55342 MIL-STD-202	Para 3.9 Method 107
Resistance to Bonding Exposure	MIL-PRF-55342	Para 3.14.2
Wire Bonding Integrity	MIL-PRF-55342	Para 4.8.13
Life Test	MIL-PRF-55342 MIL-STD-202	Para 3.17 Method 108 (rated voltage @ 70°C for 2000 hours)

R Chip Dimensions

*Min Value TCR 150 ppm for TaN and 25 ppm for NiC. **Higher Power ratings available, please consult factory.

Performance Specifications

Typical Compex commercial testing includes 100% visual, mechanical, resistance, short time overload, and Resistance Temperature Characteristic. Our parts also meet or exceed additional MIL-PRF-55342 and MIL-STD-202 requirements outlined in the table at left. Please consult the factory for your exact testing requirements.

> Higher power ratings, additional sizes, and custom resistors available. Please contact factory to request free samples.

R Series

Thin Film Resistors - Single or Dual Edge Wrap

Compex's line of wire-bondable and edge-terminated thin film resistors offers our customers significant flexibility to meet the most challenging designs. Built to the customer's exact specifications, available alternatives include single, dual, center-tap, array, and custom configurations. Standard and microwave frequency options up to 40 GHz or higher are available, voltage rating up to 100V.

- CUSTOM MANUFACTURED TO PROVIDE THE OPTIMUM PART FOR EACH APPLICATION
- ALUMINA, ALUMINUM NITRIDE AND BERYLLIUM OXIDE
- TOLERANCE DOWN TO 0.01%

R Part Number Assembly

Example shown: Compex Series R, Microwave Frequency, Dual edge-wrap SMT style TaN Resistor, C-28 (AIN), .040" x .020" x .010", 200Ω ± 2%, 150 PPM TCR, 1W **Resistor Style** M (Microwave) Power Handling Code from Table (at right) R (Standard - DC to 500 MHz) **Resistive Metallization** T (Tantalum Nitride) or Temperature Coefficient N (NiChrome) of Resistance (TCR) See R Selection Charts (page 17) Number of Resistors per Device Resistance Tolerance Material Type See R Resistance Tolerance See R Selection Charts (at right) Codes (below) Length x Width (mils) Resistance (Ω) See R Chip Dimensions (at right) First 4 digits represent significant figures Thickness (mils) and the last, the number of zeros to follow. When required, the $\ensuremath{``}\ensuremath{\mathbb{R}}''$ is used as a decimal 10 mil standard (exception 12 x 9 size, standard is 5 mils). point and the succeeding digit represents Other thicknesses available, please consult factory. significant figures only. e.g.: $10001 = 10000 \ \Omega$, $10000 = 1000 \ \Omega$, $100R5 = 100.5 \ \Omega$ Bonding Pad Metallization See R Selection Charts (at right)

Note: Standard dimensional tolerance for length and width is ± 2 mils. The thickness tolerance is ± 1 mil.

Standard Resistance Tolerance Codes

Tolerance	Code	Tolerance	Code	Tolerance	Code	Tolerance	Code
± 20%	М	± 5%	J	± 1%	F	±.05%	Q
± 15%	L	± 3%	н	± .5%	D	±.01%	S
± 10%	K	± 2%	G	±.1%	В		

www.compexcorp.com

(856) 335-2277 · sales@compexcorp.com

18

State of the Art, Inc. Semi-Precision Thick Film Chip Resistor MIL-PRF-55342/13 Wire Bondable RM0302

Performance

Resistance Range* Tolerances (± %)* TCR (± ppm/°C)* Power Rating Voltage Rating Operating Range Product Levels	1Ω 1, 100 -65 M, P,	to 22 MΩ 2, 5, 10 , 200, 30 40 mW 15 V to 150°C R, S, U, V	2 0 С. /, Т	Rep 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Power Dissipation
*see QPL55342 for part number a	vailability			-40 1 1k 1M Resistance Value (Ω)	5 0 0.25 0.50 0.75 1.00 1.25 Power (W)
Maximum Allowable Drift				Life Test	Power Derating
Temperature Characteristic TCR (ppm/°C) Thermal Shock Power Conditioning Low Temperature Operation Short Time Overload High Temperature Exposure Moisture Resistance Life (Qualification) Life (FR Level) Resistance to Soldering Heat Resistance to Bonding Exposure	$\begin{array}{c} K \\ \pm 100 \\ \pm 0.5\% \\ \pm 0.25\% \\ \pm 0.25\% \\ \pm 0.5\% \\ \pm 0.5\% \\ \pm 0.5\% \\ \pm 0.5\% \\ \pm 2.0\% \\ \pm 0.25\% \\ \pm 0.25\% \end{array}$	L ±200 ±0.5% ±0.25% ±0.25% ±0.25% ±0.5% ±0.5% ±0.5% ±0.25%	M ±300 ±0.5% ±0.5% ±0.5% ±1.0% ±0.5% ±2.0% ±2.0% ±2.0% ±0.25%	0.5 0.4 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	100 75 50 25 0 -10 70 150 Ambient Temperature (°C)

Part Number

M55342K13W100DS -W

	Packaging: -TR: Tape & Reel -W: Waffle Tray	
	Product Level (/1000 hrs.): M: 1% P: 0.1% R & U: 0.01% S & V: 0.001% T: Space 0.001%	
	Resistance Value and Tolerance: Ω: D: 1% G: 2% J: 5% M: 10%	
	Three numerals and a letter indicating $k\Omega$: E: 1% H: 2% K: 5% N: 10%	
	decimal, value range, and tolerance M\Omega: F: 1% T: 2% L: 5% P: 10%	
	Termination Material: W: Wire Bondable Gold	
	Size: 13: RM0302	
	Temperature Characteristic (ppm/°C): K: ±100 L: ±200 M: ±300	
Performance S	Specification MIL-PRF-55342	

Mechanical

	Inches	Millimeters
Length (a)	.032(.030034)	0.81(0.76 - 0.86)
Width (b)	.022(.020024)	0.56(0.51 - 0.61)
Thickness (c)	.015(.010020)	0.38(0.25 - 0.51)
Top Termination (d)	.006(.004008)	0.15(0.10 - 0.20)

Approximate Weight 0.00055 g

State of the Art, Inc. 2470 Fox Hill Road, State College, PA, USA 16803-1797 www.resistor.com Telephone: 814-355-8004 Toll Free: 800-458-3401 Fax: 814-355-2714 specifications Subject to Change Without Notice All Products Made in the USA Copyright 2015 by State of the Art, Inc.