fsNet: connection between the Field System
and the Yebes Control System for the
40 and 13.2 m Radiotelescopes

L. Barbas, P. de Vicente, F. Beltran, J. Gonzalez, R. Bolaifio

Informe Técnico IT-CDT 2020-10

Revision history

Version Date Author Updates
1.0 28-04-2020 P. de Vicente First version
1.1 06-05-2020 P. de Vicente Minor changes
1.2 06-05-2020 J. Gonzélez Satellite section
1.3 06-05-2020 J. Gonzélez & F. Beltran Minor changes
1.4 07-05-2020 P. de Vicente & J. Gonzdlez Final version

CONTENTS

Contents
1 Introduction
2 Some words on the FS customization

3

4

8

ACS type legacy connection between the FS and YRTCS
New connection between the FS and YRTCS
Structure with exchanged information

Commands

6.1 Basicantennacommands e
6.2 Commandnoisediode
6.3 Phasecalibrationmode L Lo
6.4 Pointingmodelupdate
6.5 Newsourcetobetracked
6.6 New offsets to be applied to the source being tracked
6.7 Subreflectorcontrol
6.8 Projectidentifier.
6.9 New frequency of observation
6.10 Reset frequency of observation and attenuation

Monitored variables

7.1 Antenna position and on source tracking Lo
7.2 Monitornoisediode L
7.3 Monitor phase calibrator Lo
7.4 Weather parametersttt e e e e e e
7.5 Other parameters e e e e e e

Satellite tracking

11
11
12
12
13
13
14
14
14
15
16

16
16
16
16
17
17

17

1 INTRODUCTION 3

1 Introduction

The Field System (FS hereafter) is the software used at many radio telescopes to monitor and
control VLBI backends and manage VLBI observations at the stations. This software is com-
posed of a suite of executables, libraries, and source code that is installed in a specialized PC
running Linux/Debian. The FS provides some tools to allow the connection with the control
system of each radiotelescope. This report briefly summarizes the connection developed at the
Observatory of Yebes to send commands from the FS to the Yebes Radio Telescopes Control
System (YRTCS) and to inject monitor variables back into the FS.

2 Some words on the FS customization

During its normal usage, the FS usually runs a script (the snap file) with repetitive commands
which command sources to be observed, set the local oscillator frequency for each band, set
the appropriate attenuation levels for each band at the VLBI backend, configure the sampling
and digitizing scheme and monitor the status of the antenna (position and tracking), GPS versus
Maser time difference and weather parameters.

One of the most versatile tools the FS has is a shared memory area which is divided in two
blocks: FS and ST. The FS shared memory block is reserved for internal FS variables. The
station shared block (ST) can be fully customized by the users to allow for new variables useful
for the station. Both blocks of memory are reserved during the the computer boot process and
can be used (read/write) by any code that connects to the shared memory area.

The code that implements the commands mentioned in the previous paragraph and which
need to contact the local control system is stored in folder /usr2/st. Antenna commands
are processed at directory ant cn within executable antcn and any other commands related to
equipment at directory stgkr within executable stgkr. Other directories in that folder host
“include” files or additional auxiliary directories.

The key to making the connection between the FS and the external control system is to use
the antcn and stgkr excutables to fill in some shared variables, that can be read by a third
program at the FS computer which has the ability to directly communicate to the outside.

For example antcn . c has the following piece of code that gets executed when a new source
is commanded (case 1) or when new offsets are commanded (case 2):

[oenn]

case 1: /* source= command x/

ierr = 0;
strcpy (buf, "Commanding to a new source/new offsets");
logit (buf, 0,NULL) ;
fs->ionsor = 0;
st->newsource = 1;
sleep (RETARDO) ;
break;
case 2: /+ offsets */
ierr = 0;
strcpy (buf, "Commanding new source/new offsets");
logit (buf, 0,NULL) ;
fs—->ionsor = 0;
st->newoffsets = 1;
sleep (RETARDO) ;

break;

[...]

3 ACS TYPE LEGACY CONNECTION BETWEEN THE FS AND YRTCS 4

In the example above we can see that, apart from some print and log commands, some
variables get filled in each case:

e fs—>ionsor = 0; This variable states that the antenna is off source because a new
source has been commanded. The control system will set it back to 1 when the antena is
on the source.

e st->newsource = 1; This variable acts as a semaphore and states that a new source
has been commanded. The control system will set it back to O once the antenna starts
moving towards this new source.

e st->newoffsets = 1; This variable acts as a semaphore to indicate that new offsets
have been commanded. The control system will set it back to 0 once the antenna injects
the new offsets.

Variables prepended with £s-> belong to the FS shared memory, whereas those prepended
with st-> belong to the ST shared memory.

An executable located at /usr2/st/fsNet will read these variables and communicate
with the external control system of the antenna. This short example shows the power of shared
memory as a key tool for communication.

For a thorough and deep explanation on how the FS works please refer to TOG classes by
Ed Himwich and manuals from Ed Himwich and Nancy Vanderberg.

3 ACS type legacy connection between the FS and YRTCS

Prior to 2015 the connection between the FS and the YCRTS was done using ACS components.
An ACS component running at the FS computer and with access to its shared memory used the
built in and native ACS connection between components. This solution is rather straightforward
but has an important drawback: the FS computer is not detached from the rest of the YCRTS.
In particular it needs to comply with all the hardware and software requirements of the YCRTS.

By the beginning of 2015 we decided to detach both parts and communicate them through
sockets. This allowed independence and frequent OS updates at the FS computer, which tradi-
tionally required some special hardware interfaces for controlling the legacy VLBI Data Acqui-
sition Rack (DAR). This is no longer necessary since the only specific hardware interfaces left
by that time were GPIB cards which were replaced by Ethernet to GPIB converters which can
be physically located close to the measuring devices.

4 New connection between the FS and YRTCS

Since 2015, the transfer of information between the FS and the YRCTS is done using a TCP
socket connection and a structure which is passed forth and back every 100 milliseconds the
fastest. When processing commands the structure will take much more time to be transferred
because the communication is blocking (the communication channel will block until an ac-
knowledegment is received within YRCTS once a command has been processed).

4 NEW CONNECTION BETWEEN THE FS AND YRTCS 5

On the side of the YRCTS there is a C++ ACS component, called fsNetComp, which com-
municates with the rest of YCRTS components using some ACS tools: notification channel
subscription and direct request. This component when executed for the first time creates a
socket server ready to answer requests from any client. If it gets a new connection from the FS
client it starts an infinite loop which pauses at the end of each cycle 50 milliseconds. The loop
may be aborted if the connection from the client is closed.

Inside the component loop, the content of the structure received from the FS is copied in
an internal structure called m_shms_ compInfo which contains the same format as the trans-
ferred structure. The structure in the YCRTS fsNetComp component is then examined variable
per variable looking for commands for the antenna, frontends, backends and other parts of the
YCRTS which may be requested. The commands are considered as such when a given variable
in the structure is set to TRUE. Once the command is passed to the rest of components, it waits
for acknowledgement and when received that variable is set back to FALSE and the flow within
the loop resumes.

In parallel to the loop, some variables of the structure in the fsNetComp component are
constantly updated within some notification channels. For example, fsNetComp suscribes to
the weather channel and updates all meteorological information on the structure with every new
data received. The update frequency depends on each channel.

At the end of the loop the structure of the shared memory is sent back to the FS stating that
the commands have been performed and with new updated information from several monitor
parameters. The time required to complete the loop depends on the commands received. If no
command has been sent from the FS, the execution of the loop will be very fast because it will
only send monitored data.

On the FS side there is a C++, fsNet, which is started manually from the Linux shell. When
it boots, it opens a TCP socket to the server and enters into an infinite loop which can be broken
by a manual Control-C or by stopping the server at the YCRTS side. The loop fills in the
structure with information from the shared memory (FS and ST blocks) and sends this structure
to the server. At the end of the loop it reads back the structure, updates the shared memory
variables which are used for monitoring and starts the loop again only changing those variables
which are associated to commands.

The fsNet client allows to set a debugging level for printing messages tagged with a date
stamp. This is very useful for debugging purposes and for monitoring the transfer process. The
messages get displayed at the Linux console colorized to help a fast interpretation. Fig 1 shows
a screenshot of the fsNet client running at the FS computer.

The allowed commands from the FS towards the YRTCS are described below. Each of them
have a tag that indicates that they have been triggered by the FS and that the request has not
been processed yet:

e New source to be tracked.
e New offsets with respect to the tracking source.
e Initiate antenna boot sequence.

e Send antenna to stow.

4 NEW CONNECTION BETWEEN THE FS AND YRTCS 6

= fSNET - Konsaole 2 & x

File Edit Wiew Bookmarks Settings Help

B

Answer newloa
Answer newl

S

_‘:- & fusr2icontrol : fs || @ fSMET = TAIL TSYS & graficos canales | (@] ~fscheds :tcsh | (B ~fscheds : tcsh

|X’

Figure 1: fsNet client screenshot at the Field System computer. Yellow messages are commands towards
the YCRTS. Green messages indicate responses from the server

Stop antenna.

Set the antenna to standby.

New configuration for frontend A, B, C and/or D

Reset configuration for frontend A, B, C and/or D

Set calibrarion noise diode to ON, OFF or CONTINOUS

Switch ON or OFF the phase cal tone.

Get active pointing model
The monitored information is classified as follows:
e Weather information.

Position of the antenna.

Tracking activated and on source: false or true.

Opacity at the observed frequencies.

Frequency and attenuation for the receivers.

Fig. 2 summarizes the communication process described above, and the execution sequence
for the fsNet instance at the FS is shown in Figure 3. The structure with the information is
thoroughly described in next section.

4 NEW CONNECTION BETWEEN THE FS AND YRTCS

Communication between
ACS and FS

Start ACS server
(fsMet component)

Mo

v

Whait for & FS connection

Is there any
FS client
connected?

Yes

FS updates its information
using the structure
receved

Y

FS fill the structure

with its stored i ACS sends
Infarmation (LO e structure to FS

freq., source info...)

Do the command, fill
its information in the
structure and set its tag
o False

Is there any
command to do?

Is there any
FS command tag
activated in
the structure?

Mo

Setthe command tag
to True in the

structrure
ACS fill the structure
ES sends the structure ~ with its stored
S To ACS information (weather
data, antenna position...)

ACS updates its information
using the structure
received

Figure 2: Communication flowchart between the FS and the YRTCS.

4 NEW CONNECTION BETWEEN THE FS AND YRTCS

]
\ /

".\ start /—l
\ /

Read config file
set(complP, compPort)

v

Open socket
open(complP, compPort)

\

‘ Read FS & ST shared memory ‘

//"‘x_
4»<w\h\ile(ﬂ\/\

'

st(shmem) » fsInfo
fs(shmem) = fsinfo

v

Write fsinfo to socket

v

Read complnfo from socket

//ﬁpda&:\a Update command status
H‘{I’Dg stelt_gf.}/ in shared memory

1

Update variables
in shared memory

v

— Sleep (100ms)

Figure 3: Process flowchart at the FS side. A similar sequence is executed at the ACS side.

5 STRUCTURE WITH EXCHANGED INFORMATION

5 Structure with exchanged information

The structure with information is described below:

struct shmSelection {

unsigned int id;
unsigned int caln_cmd;
// 2: noise diode on, 3: noise diode 80Hz

unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int

int
int
int

int
int
int
int
int

int
int
int
int
int
int

caln_sts;
pcal_cmd;
pcal_sts;
pmodel_cmd;

newsource_cmd;
newoffsets_cmd;
project_cmd;

newloa;
newlob;
newloc;
newlod;
resetlo;

boot_cmd;
stow_cmd;
standby_cmd;
stop_cmd;
rx_reset_cmd;
m2mode_ cmd;

//Component Variables
double az;
double el;

double pmodel[9];

unsigned int ionsor;
unsigned int point;
unsigned int correctpoint;

double gps;

double opaca;
double opacb;
double opacc;
double opacd;

double wh2omm;

float averageWindDirection;
float averageWindSpeed;
float humidity;

float pressure;

float temperature;

// FS variables
char sourcename([1l1l];
double rab50;

double dec50;
float epl950;

float raoff;

float decoff;

float azoff;
float eloff;
float loa;
float lob;
float loc;
float lod;

//
//

//

// Azimuth in degs

0, Jjus
0: do

do

o O

do

o O
=}
o

no
1:EVN,

no
no
no
no
do

o O O O O

do
do
do
do
do

O O O O O o

t read,
nothing,

nothing,

phase cal off,

nothing,

1,2,3,4,5 write in memory
1: noise diode off,

1 phase cal off,

2 phase cal on

2

noise diode off, 2: noise diode on, 3: noise diode 80Hz

phase cal on

1 update pointing model values

new source commanded, 1l: new source commanded
new offsets commanded, 1:
3:1IVS, 4:Radioastron, 5:tests

2:GMVA,

new loa
new lob
new loc
new lod
nothing,

commanded,
commanded,
commanded,
commanded,

new offsets commanded

1: new loa
1: new lob
1: new loc
1: new lod

1: reset lo

boot required, 1:
1: drive to stow,

nothing,
nothing,
nothing,
nothing.
nothing,

e e e

// Elevation in degs

// Pointing model parameters

//
//

0: do
0: do

opacity
opacity
opacity
opacity
ammount

nothing,
nothing,

of the
of the
of the
of the

new boot required
2:
standby, 2: activate
stop antenna
reset list of receivers in use
m2 geo mode, 2:

unstow

m2 astro mode

1: new pointing commanded
1: apply last pointing corrections

atmosphere
atmosphere
atmosphere
atmosphere

(neper)
(neper)
(neper)
(neper)

of precipitable water in the atmosphere (mm)

5 STRUCTURE WITH EXCHANGED INFORMATION

int
int
int
int

atta;
attb;
attc;
attd;

IF
IF
IF
IF

Attenuation
Attenuation
Attenuation
Attenuation

o w >

10

This structure is stored at the FS and transferred through the TCP socket connection. There
is also a copy of such structure at the component (YCRTS server side) which contains the up-
dated information from the telescope as explained in the previous section. Variables associated
to commands get modified first at the client (FS) and later at the server (YCRTS).

Variables modified at the FS computer are listed below:

struct shmSelection {

unsigned int id;

unsigned int caln_cmd;

// 3:

noise diode 80Hz

unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned

int
int
int
int

int
int
int

int
int
int
int
int

int
int
int
int
int
int

int
int

caln_sts;
pcal_cmd;
pcal_sts;
pmodel_cmd;

newsource_cmd;
newoffsets_cmd;
project_cmd;

newloa;
newlob;
newloc;
newlod;
resetlo;

boot_cmd;
stow_cmd;
standby_cmd;
stop_cmd;
rx_reset_cmd;
m2mode_ cmd;

point;
correctpoint;

// FS variables
char sourcename[1l1l];
double rab50;

double dec50;

float epl950;

float raoff;

float decoff;

float azoff;

float eloff;

float
float
float
float

int
int
int
int

atta;
attb;
attc;
attd;

loa;
lob;
loc;
lod;

//
//

noise diode on,

de on, 3:
2 phase cal on

model values

ron, S5:tests
loa

lob

loc

lod
required

2: unstow
tivate

reset list of receivers in use

m2 astro mode

ommanded

0, Jjust read, 1,2,3,4,5 write in memory
0: do nothing, 1: noise diode off, 2:
1: noise diode off, 2: noise dio
0: do nothing, 1 phase cal off,
1: phase cal off, 2 phase cal on
0: do nothing, 1 update pointing
0: no new source commanded, 1:

0: no new offsets commanded, 1:
1:EVN, 2:GMVA, 3:IVS, 4:Radioast
0: no new loa commanded, 1: new
0: no new lob commanded, 1: new
0: no new loc commanded, 1: new
0: no new lod commanded, 1: new
0: do nothing, 1: reset lo

0: no boot required, 1l: new boot
0: do nothing, 1: drive to stow,
0: do nothing, 1: standby, 2: ac
0: do nothing, 1: stop antenna

0: do nothing. 1:

0: do nothing, 1: m2 geo mode, 2:
0: do nothing, 1: new pointing c
0: do nothing,

noise diode 80Hz

new source commanded
new offsets commanded

1: apply last pointing corrections

IF
IF
IF
IF

Attenuation
Attenuation
Attenuation
Attenuation

o Qw

Variables modified at the YCRTS computer are listed below:

6 COMMANDS 11

struct shmSelection {

unsigned int caln_cmd; // 0: do nothing, 1: noise diode off, 2: noise diode on,
// 3: noise diode 80Hz

unsigned int caln_sts; // 1: noise diode off, 2: noise diode on, 3: noise diode 80Hz
unsigned int pcal_cmd; // 0: do nothing, 1 phase cal off, 2 phase cal on
unsigned int pcal_sts; // 1: phase cal off, 2 phase cal on

unsigned int pmodel_cmd; // 0: do nothing, 1 update pointing model values
unsigned int newsource_cmd; // 0: no new source commanded, 1l: new source commanded
unsigned int newoffsets_cmd; // 0: no new offsets commanded, 1l: new offsets commanded
unsigned int newloa; // 0: no new loa commanded, 1: new loa

unsigned int newlob; // 0: no new lob commanded, 1: new lob

unsigned int newloc; // 0: no new loc commanded, 1: new loc

unsigned int newlod; // 0: no new lod commanded, 1: new lod

unsigned int resetlo; // 0: do nothing, 1: reset lo

unsigned int boot_cmd; // 0: no boot required, 1l: new boot required

unsigned int stow_cmd; // 0: do nothing, 1: drive to stow, 2: unstow

unsigned int standby_cmd; // 0: do nothing, 1: standby, 2: activate

unsigned int stop_cmd; // 0: do nothing, 1: stop antenna

unsigned int rx_reset_cmd; // 0: do nothing. 1: reset list of receivers in use
unsigned int m2mode_cmd; // 0: do nothing, 1: m2 geo mode, 2: m2 astro mode
//Component Variables

double az; // Azimuth in degs

double el; // Elevation in degs

double pmodel[9]; // Pointing model parameters

unsigned int ionsor;

double gps;

double opaca; // opacity of the atmosphere (neper)

double opacb; // opacity of the atmosphere (neper)

double opacc; // opacity of the atmosphere (neper)

double opacd; // opacity of the atmosphere (neper)

double wh2omm; // amount of precipitable water in the atmosphere (mm)

float averageWindDirection;
float averageWindSpeed;
float humidity;

float pressure;

float temperature;

6 Commands

6.1 Basic antenna commands

[boot_cmd] Unsigned int variable. Initiate boot sequence. The boot sequence is composed
of more than 10 individual commands that prepare the antenna for observation. For example
it sets the correct time, loads the pointing model, sets the correct position of the subreflector,
unstows the pins

e (. Do not initiate boot sequence.
e 1. Initiate boot sequence.

[standby_cmd] Unsigned int variable. Sets the antenna to standby mode. Brakes are
active and motors deactivated.

6 COMMANDS 12

e (. Do not set to standby.

e 1. Set the antenna to standby.

[stop_cmd] Unsigned int variable. Stop antenna but keep motors on.
e 0. Do not stop the antenna.

e 1. Stop the antenna.

[stow_cmd] Unsigned int variable. Send the antenna to the nearest stow position or
unstow. During the stow process the pointing model is unloaded. Unstow does not load back

the pointing model.
e (0. Do nothing.
e 1. Stow to the nearest position.

e 2. Unstow the antenna.

6.2 Command noise diode

[caln_cmd] Unsigned int variable. This variable can take 4 values:
e (. Do not command the noise calibration diode and keep its current status.
e 1. Command the noise calibration diode and switch it OFF.
e 2. Command the noise calibration diode and switch it ON.
e 3. Command the noise calibration diode and switch it to a 80 Hz continuous operation.

Any other value will be ignored. Once this command is processed by the YCRTS, the variable
is set to O in the internal component structure which will be sent back to the FS.

6.3 Phase calibration mode

[pcal_cmd] Unsigned int variable. This variable can take 3 values:
e (. Do not command the phase calibrator and keep its current status.
e 1. Command the phase calibrator and switch it OFF.
e 2. Command the phase calibrator and switch it ON.

Any other value will be ignored. Once this command is processed by the YCRTS the variable
is set to O in the internal component structure which will be sent back to the FS.

6 COMMANDS 13

6.4 Pointing model update

[pmodel_cmd] Unsigned int variable. This variable can take 2 values:

e (. Do not retrieve the current pointing model.

e 1. Retrieve the current pointing model.

Any other value will be ignored. Once this command is processed by the YCRTS the variable
is set to O in the internal component structure which will be sent back to the FS.

Pointing model passed through

The goal is to display this pointing model in the FS log for logging purposes duing the initial
configuration phase. The pointing model is stored in a an array of 9 doubles. The meaning of
each parameter is explained in de Vicente and Barcia (2007).

e pmodel [9]. Nine element double array. Nine parameters which include offsets in
azimuth and elevation encoders, tilts of the elevation axis towards the north and east,
collimation errors, lack of perpendicularity between azimuth and elevation axis and grav-
itational effects. See de Vicente and Barcia (2007).

6.5 New source to be tracked

[newsource_cmd] Unsigned int variable. This variable can take 2 values:

e (. No new source commanded.

e 1. New source commanded.

Any other value will be ignored. Once this command is processed by the YCRTS the variable
is set to O in the internal component structure which will be sent back to the FS.
Source coordinates to be passed

e [sourcename]. Char variable which allows a maximum of 11 characters. Name of
the source. The YCRTS recognizes special names and allows for special tracking. For
example a name that starts by “RA_" is understood by the YCRTS as a source whose
tracking will be based on an azimuth and elevation table that will be passed independently
to the control system. This table allows for tracking satellites or fast moving objects (see
section 8). This can be customized for each case to allow for tracking non natural sources
from the FS. If the name of the source is “AZEL”, the coordinates ra50 and dec50 will
be considered to be Azimuth and Elevation in radians and ep1 950 will be ignored.

e ra50. Double variable. Right ascention in radians referred to the equinox in variable
epl950.

e dec50. Double variable. Declination in radians referred to the equinox in variable
epl950.

e ¢p1950. Float variable. Equinox. It usually only takes two possible values: 1950
or 2000. YCRTS will correct for precession, nutation and aberration and compute the
apparent coordinates for the current date.

6 COMMANDS 14

6.6 New offsets to be applied to the source being tracked

[pmodel_cmd]. Unsigned int variable. This variable can take 2 values:
e (. No new offsets commanded.
e 1. New offets commanded.

Any other value will be ignored. Once this command is processed by the YCRTS the variable
is set to O in the internal component structure which will be sent back to the FS.

Offsets to be passed

These offsets are treated in a peculiar way, which can be adapted to any requirements. Offsets
are applicable either in right ascention and declination or in azimuth and elevation, but not at
the same time. All variables are float.

e raoff. Offsets to be applied in right ascention. Units at the FS: radians. These offsets
are only applied if azoff and eloff are zero.

e decoff. Offsets to be applied in declination. Units at the FS: radians. These offsets are
applied only if azoff and elof f are zero.

e azoff. Offsets to be applied in azimuth. Units at the FS: radians. These offsets are
applied only if raoff and decoff are zero. This is the case for typical ONOFF scans

e cloff. Offsets to be applied in elevation. Units at the FS: radians. These offsets are
applied only if raoff and decoff are zero. This is the case for typical ONOFF scans

6.7 Subreflector control

[m2mode_cmd]. Unsigned int variable. This variable allows to control the subreflector for
the next observation. The subreflector has 5 or 6 degrees of freedom and its optimum position
usually depends on the elevation of the antenna.

e (. Do nothing and keep the current mode.

e 1. Geo mode. The subreflector is blocked at its optimum position and does not change
with elevation.

e 2. Astro mode. The subreflector moves depending on elevation to have a maximum
aperture efficiency at all elevations.

6.8 Project identifier

[project_cmd] Unsigned int variable. This variable can be adapted to the needs of the
radioelescope. For the 40m RT it allows to distinguish the type of observations for further
storage.

e 1. EVN observations.

6 COMMANDS 15

2. GMVA observations.

3. IVS observations.

4. Radioastron observations.

5. Testing observations.

6.9 New frequency of observation

[newloa] Unsigned int variable. This command allows to set 4 different frequencies associ-
ated to IFs A, B, C and D and IF attenuations at the receiver. The variables may only take two
values:

e newloa/b/c/d. 0. No new frequency for IF A/B/C/D commanded.
e newloa/b/c/d. 1. New frequency for IF A/B/C/D commanded.

Local oscillator frequency This command allows to set 4 different local oscillator frequen-
cies for channels A, B, C and D (units: MHz).

e loa. Float variable. Local oscillator frequency for channel A. Only taken into account
when newloa is commanded.

e lob. Float variable. Local oscillator frequency for channel B. Only taken into account
when newloa is commanded.

e loc. Float variable. Local oscillator frequency for channel C. Only taken into account
when newloa is commanded.

e 1lod. Float variable. Local oscillator frequency for channel D. Only taken into account
when newloa is commanded.

Relative attenuation at IF channels This command allows to set 4 different relative attenua-
tions to IFs A, B, C and D at the receiver level. These variables apply a negative or positive
attenuation value (units: dBs) relative to the default attenuation levels.

e attA. int variable. Relative attenuation to be applied at the frontend. Only taken into
account when newloa is commanded.

e attB. int variable. Relative attenuation to be applied at the frontend. Only taken into
account when newlob is commanded.

e attC. int variable. Relative attenuation to be applied at the frontend. Only taken into
account when newloc is commanded.

e attD. int variable. Relative attenuation to be applied at the frontend. Only taken into
account when newlod is commanded.

7 MONITORED VARIABLES 16

6.10 Reset frequency of observation and attenuation

[resetlo]. Unsigned int variable. This command resets all local oscillator frequencies and
IF attenuations associated to IFs A, B, C and D to a default value. The variable may only take
two values:

e resetlo. 0. No reset.

e resetlo. 1. Reset to default values. All receivers are deselected.

7 Monitored variables

These variables are required by the FS to properly work and display its values at the logging
window and to tag the recorded data as valid. They are modified at the server running at the
YCRTS .

7.1 Antenna position and on source tracking

ionsor Unsigned int variable. It monitors if the antenna is tracking the source with a maxi-
mum error of 10% of the beam size. The value is updated every 200 ms.

e (. The antena is not tracking the source, or it is off source.
e 1. The antenna is tracking the source.

Variables az and e1 monitor the position of the antenna

7.2 Monitor noise diode

caln_sts Unsigned int variable. This variable can take 3 values:
e 1. Calibration noise diode is OFF.
e 2. Calibration noise diode is ON.

e 3. Calibration noise diode is in 80 Hz continuous mode.

7.3 Monitor phase calibrator

pcal_sts Unsigned int variable. This variable can take 2 values:
e 1. Phase calibrator is OFF.

e 2. Phase calibrator is ON.

8 SATELLITE TRACKING 17

7.4 Weather parameters

Float variables. All these variables are updated every 2 seconds (wind speed and direction), and
every 10 minutes (rest of parameters). The frequency update is selectable and depends on the
weather station configuration.

e averageWindDirection. It monitors the wind direction (units: degrees from the
north clockwise).

e averageWindSpeed. Monitors the ambient average wind speed (units: m/s) during
the last 10 minutes.

e humidity. Monitors the local ambient relative humidity (units: %).

e pressure. Monitors the local ambient pressure (units: hPa)

7.5 Other parameters

Float variables. These variables are updated according to the refreshing period of the monitor
devices and their configuration: GPS (every 10 minutes), wh2omm depend on weather param-
eters and opacity is calculated when the local oscillator frequency is changed.

e gps. Monitors the GPS-Maser PPS difference (units: microseconds)

e opaca. Opacity for the frequency of observation of channel A at the current antenna
elevation.

e opacb. Opacity for the frequency of observation of channel B at the current antenna
elevation.

e opacc. Opacity for the frequency of observation of channel C at the current antenna
elevation.

e opacd. Opacity for the frequency of observation of channel D at the current antenna
elevation.

e wh2omm. Precipitable water (units: mm).

8 Satellite tracking

As mentioned above, the fsNet component allows to track satellites using the Field System if
an azimuth - elevation versus time table is provided. This option needs an additional tool, a
Python script that parses the file with the satellite’s position table: sattrack.py. This script, that
should be available in the FS’s user PATH takes two arguments; the experiment’s snap file, and
the azimut-elevation file, in the following format

2016-11-28 20:00:00 az = 048.760639 el = 13.101975

8 SATELLITE TRACKING 18

With this information, the script modifies the source commands in the snap file adapting
the schedule to the available positions table and including a special prefix in the source name:
“RA_”. Then, it transfers a modified version of the ASCII file with the positions table to the
YRCTS directory hierarchy (/home/almamgr/aries21/Catalogs/), to make it available for the
control system. Whenever a source with the special “RA_"" prefix is commanded by the Field
System, the fsNet component at the YRTCS side will detect this condidition and issue the
necessary orders to get the positions table loaded by the observing engine.

This option has been widely used for tracking Radioastron satellites and spatial probes in
the solar system.

SNAP file
source=scl
mod p mod -tm_ A

Load(modified_azel_vs_time.txt)

........ |'source=RA_*.

Field System PC

Figure 4: fsNet with satellite tracking flowchart.

REFERENCES 19

References

[1] de Vicente, P. Barcia, A. Deconstructing a pointing model for the 40m RT. OAN Technical
Report 2007-26.

[2] Himwich, E. Vandenberg, N. R. Mark IV Field System Documentation. NVI Inc./Goddard
Space Flight Center 1997.

